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PREFACE 
Medical imaging is an amazing field. It is not only a required 
course for our biomedical engineering students but also 
invaluable knowledge for your and your family members’ 
healthcare. When you visit a hospital or a clinic, it is quite 
likely that some form(s) of medical imaging will be involved. 
Medical imaging is a highly interdisciplinary field and a multi-
billion dollar business. Several Nobel prizes and a large job 
market are associated with medical imaging. Learning, 
teaching and researching in this field is a blessing.  

This book is intended as a state of the art yet concise 
introduction of medical imaging, from the mathematical and 
physical foundation to individual and multi-modality 
tomographic imaging. The first part of this book is on the 
mathematical foundation. Then, each of the major medical 
imaging modalities will be described, along with modality-
specific imaging principles. Multi-modality imaging and 
machine learning will be also explained. 

Over the past five years, I have been teaching medical imaging 
in Department of Biomedical Engineering at undergraduate 
and graduate levels respectively. This has been a challenging 
yet rewarding experience. As a Chinese saying goes, teaching 
and learning are mutually promoting. This book is intended to 
address major challenges in teaching medical imaging, and 
reflects the current status of the course, especially so for 
undergraduate teaching by excluding the sections with “*”. 
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The first challenge is that students came to the class with 
diverse educational background, and were required to learn 
about various tomographic modalities that are quite 
complicated and highly interdisciplinary. All the involved 
imaging modalities are based on an elegant mathematical 
foundation which consists of linear system theory, Fourier 
analysis, and signal processing. While some of the students 
already have a good understanding of these subjects, a 
majority of them do not have clear concepts on linearity, 
convolution, continuous and discrete Fourier transforms, 
Nyquist sampling rate, and so on. A concise summary of key 
formulas is often given as an appendix to a medical imaging 
textbook but it is too dense to be digested. On the other hand, 
there are excellent books on these topics but they are for 
independent courses, and too much for this student 
population. Current practice for our course is to teach 
students about the needed mathamatical knowledge over a 
quarter of the semester. PPTs are used with the teaching 
materials developed or adapted from different sources. 
However, in this way the information is not presented in a 
unified format, and the text in PPTs may not be always 
sufficiently clear. This situation motivated me to write the first 
part of the book to fill in the gap between a dry appendix and 
a rich textbook. 

The second challenge is that tomographic imaging modalities 
are under rapid development. How to present them effectively 
within one semester requires dynamic optimizaiton. Basically, 
I focus on key concepts, deep insights, and basic skills so that 
students are well prepared to master each of the major 
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tomographic modalities with confidence. Furthermore, 
combinations of imaging modalities are underlined in this 
course. The future of imaging I see is what we call “omni-
tomography” to collect all kinds of data simultaneously within 
a single gantry for physical couplings, information synergies, 
end-to-end workflows, and convergence of prevention, 
diagnosis, and intervention. 

The third challenge is that artificial intelligence / machine 
learning has recently attracted a major attention in many 
fields including tomographic imaging. I believe that this is a 
paradigm shift and will have a fundamental and lasting impact 
on the field of medical imaging. Hence, it is worthwhile 
incorporating machine learning ideas and data-driven imagng 
methods in this course. 

Currently, there is no textbook that addresses the above 
challenges and fits for medical imaging teaching. I feel 
responsible and previlidged to share my understanding and 
experience with this version-controled “living” textbook, 
which will be made publicly available on Internet, along with 
my teaching PPTs and videos. My plan is to finish the 
fundation part first, then deal with each major tomographic 
modality, and finally discuss multimodality imaging and omni-
tomography.  

The book is based on my class videos recorded by MultiMedia 
Services, Rensselaer Polytechnic Institute. MATLAB is used to 
enhance the learning experience. Many IT experts, colleagues 
and students have, in different ways, helped facilitate or 
improve the development of this book, especially John Klucina 
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and Michael Juneau for IT assistance, Brad Osgood for 
permission to use some of his teaching notes for the class 
EE261 “Fourier Transform and its Applications”, and Joshua 
Goldwag for his transcribing the lecture videos and editorial 
assistance. If you find any typos or have any critiques or 
suggestions, please feel free to let me know. I am committed 
to refining this book promptly and improving the teaching 
outcomes constantly. 

Ge Wang, PhD 
Clark & Crossan Endowed Chair Professor 
Director, Biomedical Imaging Center, CBIS/BME/SoE 
Rensselaer Polytechnic Institute 
110 8th Street, Troy, New York 12180, USA 
ge-wang@ieee.org; http://biotech.rpi.edu/centers/bic  

mailto:ge-wang@ieee.org
http://biotech.rpi.edu/centers/bic
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CHAPTER 1. SYSTEM 
The system is one of the most fundamental concepts in many 
fields of science and engineering. A most important special 
case of the system is the linear system, especially the shift-
invariant linear system. Based on the teaching experience 
with biomedical engineering students, here we discuss the key 
definitions and some subtle issues involving the linear system. 
Also, we touch upon the nonlinear system and associated 
chaotic behaviors. 

SECTION 1.1. LINEAR SYSTEM 

The concept of the linear system is simple and yet widely 
used (Oppenheim, Willsky et al. 1997). As stated in a popular 
medical imaging textbook (Suetens 2009): 

Linear System: “A system is linear if the superposition principle 
holds, that is, { } { } { }1 1 2 2 1 1 2 2L c s c s c L s c L s+ = +  , 1 2c ,c R∀ ∈ , 

with 1s  and 2s  as arbitrary signals.” (Suetens 2009). 

On Wikipedia, the definition of the linear system is consistent 
with the previous definition: “Given two valid inputs 1x ( t ) , 

2x ( t )  as well as their respective outputs { }1 1y H x ( t )= ,

{ }2 2y H x ( t )= , then a linear system must satisfy 

{ }1 2 1 2y y H x ( t ) x ( t )α β α β+ = +  for any scalar values α  
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and β ” (Wikipedia-Linear-System 2018), which is referred to 
as the superposition property. 

The superposition property 

 { }1 2 1 2y y H x ( t ) x ( t )α β α β+ = +   (1.1.1) 

implies both additivity 

 { }1 2 1 2y y H x ( t ) x ( t )+ = +  (1.1.2) 

and homogeneity 

 { }y H x( t )α α= .  (1.1.3) 

The homogeneity property is also known as the scaling 
property. Likewise, the existence of additivity and 
homogeneity implies the superposition property.  

Of a special note, a scalar field for a linear system can be 
different case by case. “More generally, vector spaces can be 
defined in which the scalars are elements of an arbitrary field” 
(Gallager 2006). On Wikipedia, it reads that “The scalars can 
be taken from any field, including the rational, algebraic, real, 
and complex numbers, as well as finite fields” (Wikipedia-Scalar 
2018). 

In the classic book “Feynman Lectures on Physics” (Feynman, 
Leighton et al. 2011), the linear system was presented in the 
same way. Feynman started with a second order differential 
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equation for oscillating systems, and used an operator L( x )  
to simplify the expression. Then, he formulated the additivity 
property L( x y ) L( x ) L(y)+ = +  and the homogeneity 
property L( x ) L( x )α α=  in Eqs. (25.3) and (25.4) 
respectively. It appears that Feynman felt that the additivity 
would be more informative than the homogeneity, as he 
stated “(25.3) and (25.4) [were] very closely related, because if 
we put x x+  into (25.3), this is the same as setting 2α =  in 
(25.4), and so on.” 

A closely related concept is the linear function (Suetens 
2009). It is well known that a polynomial of degree 1 is called 
linear, with a general form  

 f ( x ) mx b= +    (1.1.4) 

where m  is a slope, and b  is an intercept. However, since 
the intercept can be a non-zero number, a linear function with 
a nontrivial intercept satisfies neither additivity nor 
homogeneity. Thus, there is a clear distinction between a 
linear system and a linear function, with the former being a 
special case of the latter. 

However, the distinction between a linear system and a linear 
function seem not intrinsic. Taking f ( x ) mx b= +  as an 
example, in one coordinate system you may happen to have 

0b = while in another coordinate system you may see 0b ≠ . 
By the definition of the linear system, f ( x ) mx b= +  
represents a linear system in the former case but it does not 
in the latter case. If we want to define the linearity of a system 
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as an intrinsic property, it should not depend on the selection 
of a coordinate system; in other words, it is reasonable to 
require that the definition of a concept be independent of the 
selection of a coordinate system in which an observer thinks 
or works. Note that relativity theory was, in a good sense, 
established based on the equivalence of coordinate systems 
(Einstein 2005), and the requirement here for the concept 
invariability with respect to a coordinate system is in the same 
spirit. 

As an exercise of implementing the invariability of this type, 
let us re-define the linear system for the frame irrelevance. 
The apparent discrepancy between the linear system and linear 
function concepts can be eliminated by considering the system 
responses in terms of relative changes. Given a status of a 
system in any coordinate system, let us look at changes in the 
input and the resultant changes in the output of the system. 
Then, the linear system can be re-defined as follows (existing 
alternative definitions of the linear system can be similarly 
modified). 

Linear System: Given two valid input changes 1x ( t )∆ , 2x ( t )∆  

as well as their respective outputs { }1 1y H x ( t )∆ = ∆ ,

{ }2 2y H x ( t )∆ = ∆ , a linear system must satisfy 

 { }1 2 1 2y y H x ( t ) x ( t )α β α β∆ + ∆ = ∆ + ∆   (1.1.5) 

for any allowed scalar values α  and β . The relative 
superposition property implies both the relative 
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additivity and relative homogeneity or relative scaling 
properties  

 { }1 2 1 2y y H x ( t ) x ( t )∆ + ∆ = ∆ + ∆  and (1.1.6) 

 { }y H x( t )α α∆ = ∆ ,  (1.1.7) 

respectively. 

In light of the relative superposition principle, it becomes 
immediately clear that the linear function is just a disguised 
linear system. For example, f ( x ) mx b= +  and f ( x ) mx=
are essentially the same, as long as an appropriate coordinate 
system is chosen so that 0b =  in f ( x ) mx b= + .  

In a more complicated system, the concepts of zero-state and 
zero-input responses are involved (Sontag 1998). Let us 
consider a circuit (more details in Chapter 6 on Network) 
with an input x( t )  and an output y( t ) .  Generally speaking, 
the output y( t )  can be decomposed into the two parts. The 
first part is the response purely due to the input without any 
contribution from the initial condition of the circuit, which is 
called the zero-state response. The second part is the 
response purely due to the initial condition without any 
contribution from the input, which is called the zero-input 
response. In this case, the initial condition is the energy 
initially stored in some elements of the circuit, such as 
capacitors and inductors, which steers the behavior of the 
circuit. Hence, the zero-input response plays a similar role as 
b in f ( x ) mx b= + . In contrast to the case of f ( x ) mx b= + , 
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the zero-input response is normally time-varying. Therefore, 
a time-varying translation of a coordinate system must be 
used to remove the offset and have the zero-input response.  

It may appear trivial having shifted our viewpoint from 
looking at the global variation to focusing on the relative 
change of the system response, but our relative viewpoint has 
a conceptual merit; that is, a well-posed definition should be 
irrelevant to the coordinate system associated with which the 
concept is defined, since the selection of a coordinate system 
is, to a good degree, arbitrary. Furthermore, it might be 
inspiring to mention Einstein’s equivalence principle: a local 
gravitational force due to a mass is the same as the pseudo-
force one experiences in an accelerated frame of reference 
(Einstein 2005). 

SECTION 1.2. ADDITIVITY & HOMOGENEITY 

It is very interesting to study the connection of homogeneity 
and additivity. As mentioned earlier, superposition implies 
both additivity and homogeneity. On the other hand, the 
combination of additivity and homogeneity immediately 
generates superposition. Now, two interesting questions can 
be asked: under what condition, additivity and homogeneity 
are equivalent? Are additivity and homogeneity independent 
each other?  

First, in a simplest case of a continuous function y f ( x )= , 
additivity and homogeneity are equivalent.  
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Let us now show that additivity 1 2 1 2f ( x x ) f ( x ) f ( x )+ = +  
implies homogeneity f ( x ) f ( x )α α= .  It is trivial to have 
homogeneity for a rational scalar. Indeed, f ( nx ) nf ( x )= by 
the same reason as what Feynman mentioned before, and in 

an alternative form we have 
xf ( x ) mf ( )
m

= which is

1xf ( ) f ( x )
m m

= , for positive integers n  and m . Hence, 

homogeneity holds for all positive rational scalars. Because 
0 0f ( ) f ( x ) f ( x )= + − = and f ( x ) f ( x )− = − , the scalar 

can be any rational number, be it positive, zero, or negative. 
This proof is well known (Signal-Processing-Stack-Exchange 
2018). To show that homogeneity holds for an irrational 
scalar, two somewhat cumbersome proofs were given on that 
website. It was pointed out by Antonio in an online comment 
(Signal-Processing-Stack-Exchange 2018) that to establish 
homogeneity for an irrational scalar we “just need to take into 
account that there is a rational sequence that converges to that 
irrational and continuity of f ”. Indeed, with such a limiting 
process assuming continuity, homogeneity must be valid for a 
real scalar. 

On the other hand, homogeneity f ( x ) f ( x )α α=  means 

additivity 1 2 1 2f ( x x ) f ( x ) f ( x )+ = +  in this case. Without 

loss of generality, we set 1 1x xα=  and 2 2x xα= for a given

0x ≠ . Then, 1 2 1 2 1 2f ( x x ) f ( x x ) ( ) f ( x )α α α α+ = + = +  by 

homogeneity. By homogeneity again, we have
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1 2 1 2 1 2( ) f ( x ) f ( x ) f ( x ) f ( x ) f ( x )α α α α α α+ = + = + . By 

definition, we have 1 2 1 2f ( x ) f ( x ) f ( x ) f ( x )α α+ = + . That 

is to say 1 2 1 2f ( x x ) f ( x ) f ( x )+ = + . 

However, in a general case, additivity and homogeneity are 
independent. To show their independence, we need two 
counter-examples having one property without the other. 
Given the equivalence between additivity and homogeneity in 
the above common situation, it is a little bit tricky to find 
counter-examples. Fortunately, the work can be simplified 
when we choose a scalar field different from the real domain. 

Let us show that additivity can exist without homogeneity 
with a well-known counter-example (Signal-Processing-
Stack-Exchange 2018). Here a complex-valued system is used 
to transform a complex input into its conjugate with the 
complex scalar field. This system is clearly additive. However, 
the system is not homogeneous for a complex scalar. 

Specifically, { }* * * *f ( x ) x x x f ( x )α α α α α= = ≠ =  unless 

the scalar is real or the variable is zero. 

Furthermore, we can give counter-examples where 
homogeneity exists without additivity. Let us define a real-
valued function as follows: 1f ( x ) m x=  when x  is rational, 

2f ( x ) m x=  when x  is irrational, 1m and 2m  are rational but

1 2m m≠ , and with a rational scalar domain. Clearly, the 

homogeneity property is still present, since the 
rationality/irrationality of a number will not be changed by a 
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rational scaling (multiplication) operation. However, for two 
irrational numbers 1x and 2x  that have a rational sum, 

1 2 1 1 2 2 1 2 1 2f ( x x ) m ( x x ) m ( x x ) f ( x ) f ( x )+ = + ≠ + = + , 

directly violating additivity. 

There are many other counter-examples to show the 
independence between additivity and homogeneity. 
Nevertheless, to the best of my knowledge, it still remains a 
challenge to show their independence for a real scalar. It has 
been proved above that when a function is continuous, 
additivity and homogeneity are equivalent. How should we 
break the equivalence with a discontinuous function and real 
scalar? You can try out and let me know. 

SECTION 1.3. NON-LINEAR SYSTEM 

A non-linear system is any system that is not a linear system. 
Just like a non-linear function is any function but not a linear 
function. In practice, linear systems/functions are typically 
approximations, and there are many more non-linear 
systems/functions than linear systems (After all, space-time is 
curved, not uniform/linear). 

Nonlinear systems are generally difficult to analyze but often 
times they can be numerically solved using high-performance 
computing techniques. New phenomena are inherent in many 
nonlinear systems, such as chaos (random behaviors by 
deterministic systems), solitons (stable features emerged in 
complex processes), and singularities (numerical divergence 
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of differential equations), which can be counterintuitive or 
unpredictable, and hence very interesting! 

Let us look at a common example of chaos. We assume that a 
system status (a number in the simplest case) will evolve in 
discrete steps according to 1 1n n nx rx ( x )+ = −  where x  is a 

normalized population of a certain type of animals in the 
range (0,1), r  is the growth rate of the animal, and n  is the 
index for the time step in a chosen unit (such as  a year). When 
x  is small, the population will basically grow in a linear 

fashion with a slope r . This growth rate will be dramatically 
reduced to 1r( x )−  when x  is close to the upper bound of x , 
which is one. In the case of small x , the population growth is 
biologically limited. On the other hand, for a large x , the 
growth is resource-limited. As a result, the growth curve as a 
function of time is non-linear. Since the non-linear 
relationship is just a bit more complicated than a linear 
function (i.e., the additional factor 1( x )− ), a simple solution 
or structure of solutions may be expected. However, this 
population updating formula turned out to be a chaotic 
system, since when slope r is large the number of animals in 
the future years will not be predictable! 

To understand the above paragraph visually, we can run the 
MatLab code that implements the aforementioned population 
updating formula (ShareTechNote 2018). The result is in 
Figure 1.1-1, showing how a random behavior emerges from 
a deterministic system. This phenomenon is representative of 
a chaotic behavior. 
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Figure 1.1-1. When the growth rate is large, the number of 
animals in the next year becomes random (From 
(ShareTechNote 2018)). 

SECTION 1.4. REMARKS 

In an earlier example, a complex scalar was used. 
Geometrically speaking, a complex scaling operation modifies 
both the magnitude and direction of a vector in the complex 
plane. This suggests a more general interpretation of a scalar 
as a linear system. In other words, a linear transformation has 
a similar effect on a vector in the Hilbert space, and can be 
treated as a scalar. Such a generalization can be easily made in 
a vector space (Gallager 2006). There are multiple definitions 
of a vector space equivalent to that in (Gallager 2006). As a 
convenient example, Wikipedia states that “a vector space is a 
mathematical structure formed by a collection of elements 
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called vectors, which may be added together and multiplied 
(‘scaled’) by numbers, called scalars in this context. Scalars are 
often taken to be real numbers, but there are also vector spaces 
with scalar multiplication by complex numbers, rational 
numbers, or generally any field. The operations of vector 
addition and scalar multiplication must satisfy certain 
requirements, called axioms” (Wikipedia-Vector-Space 2018). 
A simple yet general example of the linear system is a unitary 
transform in a vector space. 

The importance of the linear system concept can be 
appreciated from several perspectives. In the book “Feynman 
Lectures on Physics” (Feynman, Leighton et al. 2011), Feynman 
gave three arguments for the linear system. First, he wrote, 
“the answer is simple: because we can solve them!” He 
continued, “second (and most important), it turns out that the 
fundamental laws of physics are often linear. The Maxwell 
equations for the laws of electricity are linear, for example. The 
great laws of quantum mechanics turn out, so far as we know, 
to be linear equations. That is why we spend so much time on 
linear equations: because if we understand linear equations, we 
are ready, in principle, to understand a lot of things.” Then, he 
made the final argument that “when displacements are small, 
many functions can be approximated linearly.” A picky 
comment could be made on his last point. Taking Ohm’s law 
as an example, I V / R=  where I , V  and R  denote current, 
voltage and resistance respectively. By definition, Ohm’s law 
is a linear system. However, if V  is too large, the resistor will 
be burned out, which would follow a non-linear relationship; 
and on the other hand if V  is too small, random motions of 
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free electrons would form a tiny current that is impossible to 
predict deterministically. Thus, the relationship between I  
and V  is linear only in a range when V  is neither too small 
nor too large. The statement that the smaller the magnitude 
the better the linearity is only a mathematical illusion. 

At his time, Feynman’s impression was that “linear equations 
are important. In fact they are so important that perhaps fifty 
percent of the time we are solving linear equations in physics 
and in engineering” (Feynman, Leighton et al. 2011). If 
Feynman had not passed away, he would most likely not 
modify this estimate much, as there are competing factors that 
have kept a balance between linear and nonlinear systems in 
science and engineering.  

On one hand, with rapid development of high-performance 
computing techniques, many nonlinear systems can be 
handled despite the fact that most large-scale nonlinear 
computational tasks involve linear system solutions as 
intermediate steps (for example, with gradient search). More 
importantly, while most tasks encountered decades ago are 
forward problems, many current investigations are inverse 
problems. Even if a forward model is linear, its inverse 
solutions are often non-linear. Even if a generic solution is 
linear, the penalized versions (more details when we discuss 
iterative algorithms for tomographic reconstruction) are 
typically non-linear (Eldar and Kutyniok 2012).  

On the other hand, with explosive expansion of datasets, 
dimensionality reduction is being actively studied to offer 
revolutionary tools. Amazingly, various locally linear 



22 

 
embedding methods seem so powerful that can unravel non-
linear manifolds into low dimensional representations using 
linear algebraic algorithms (Roweis and Saul 2000, Donoho 
and Grimes 2003). Thus, linear system methods still play a key 
role in non-linear big data problems.  

With the emergence of deep learning techniques, we again see 
this “fifty-percent” landscape. As a basic building block, 
neurons are half linear (inner product) and half non-linear 
(activation). For more details, see Chapter 6, (Wang 2016) and 
(Wang, Kalra et al. 2017). 
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CHAPTER 2. CONVOLUTION 
In the linear system category, the most important subset of 
linear systems is the shift-invariant linear system, closely 
related to tomographic imaging. This chapter focuses on shift-
invariant linear systems. As shown below, for a given 
characteristics of a shift-invariant linear system, the output of 
the system is completely determined by the input to the 
system and the impulse response or point spread function 
(PSF) of the system. Mathematically, the output is equal to the 
convolution of the input and the impulse response. Hence, 
the convolution plays the central role in analysis of shift-
invariant linear systems. 

SECTION 2.1. SHIFT-INVARIANT LINEAR SYSTEM 

The shift-invariability concerns the input-output 
relationship of the shift-invariant system, and allows the 
input-output correspondence to remain the same after any 
shift in a relevant domain such as space and time. The shift-
invariability greatly simplifies the system analysis, synthesis, 
and control. Formally, we have the following definition: 

 Shift-invariant Linear System: A linear system when the 
input to the system is shifted by a certain amount, the output of 
the system will be shifted by the same amount. 

An example of a shift-invariant system is rippling in a pond. 
Wherever a water drop falls a ripple is formed in the same 
waveform around the location.  To a good approximation, 
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ripples from multiple water drops are linearly combined to 
give an overall texture. For this system, water drops are the 
input, the superimposed ripples are the output, and the linear 
system is location-invariant in the sense that the shape of any 
ripple is the same but the location of the ripple is where the 
water drop falls that produces the ripple. As another example, 
taking a photo of yourself with your smart phone. Wherever 
and whenever you do, you record an image of the same 
handsome/beautiful individual. In this case, yourself is the 
input, your digital picture is the output, and the smart phone 
as an imaging system is both location-invariant and time-
invariant. 

For a shift-invariant linear system, its response to a “point” or 
an “impulse” (a very short input with a unit “strength”; to be 
explained more below) is characteristic. Roughly speaking, if 
you know the impulse response or point spread function of 
a shift-invariant linear system, you can accurately infer the 
system response to any input function that can be represented 
as a number of impulses. Practically, any input function can be 
decomposed into a combination of impulses. Hence, the 
system behavior is completely determined by this impulse 
response or point spread function. 

An impulse is an important concept in the study of dynamics. 
According to Newton's second law of motion, F ma= , where 
F  is the amount of force used to accelerate an object, m  is 
the mass of the object, and a  is the acceleration. Since 
acceleration is the change of velocity over time, one can state 
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vF m ,
t

∆
=

∆
 and F( t ) t m v( t )∆ = ∆ . Hence, as long as the area 

under the curve F( t )  is the same, the net velocity change of 
the object will be the same. That is, the physical effect will be 
the same for any one of various impulses that all have the 
same area under the curve F( t ) . In the limiting case, the time 
period of active forcing becomes infinitesimally small, causing 
the profile F( t )  extremely tall and narrow. This results in the 
generation of the well-known Dirac delta function.  

Without loss of generality, the delta function can be defined as 
the limit of a series of rectangular functions  

1 2
0

( ), t ;
d ( t )

, otherwise.τ

τ τ τ− < <
= 
  

  (2.1.1) 

 
Let the parameter τ approach zero, we have 

 
0

0

0 0

1

lim d ( t ) ,

( t ) lim d ( t )dt .

ττ

ττ
δ

→

∞

→
−∞

≠ =

= =∫
   (2.1.2) 

This function is unconventional, and is truly a conceptual 
breakthrough relative to the conventional concept of a 
mathematical function which represents a one-to-one/many 
correspondence! Such a generalized function is defined in 
terms of distribution (i.e., the profile of d ( t )τ  in the limiting 

case) and measurement (i.e., the integral operator is a 
measurement process, and as long as the result from the 
measurement is the same, who cares about any difference in 
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the functional shape/distribution that cannot be measured at 
all!). Indeed, the generalized function disrupts the tradition 
that a function is well defined everywhere, since although it 
equals zero everywhere but it is not defined at its singular 
point. It is infinitely tall at this singularity, and it has a unit 
area over the singularity. 

This delta function has the following shift property: 

 
0 0

0

0

1

( t t ) for t t ,

( t t )dt .

δ

δ
∞

−∞

− = ≠

− =∫

 
  (2.1.3) 

SECTION 2.2. CONTINUOUS CONVOLUTION 

The product of the delta function and a continuous function f 
can be measured to give a sampling result: 

 [ ]

0

0

0 00

0

0

0

0

1
2
1 2
2

t

t

( t t ) f ( t )dt lim d ( t t ) f ( t )dt

lim f ( t )dt

lim f ( t*)

lim f ( t*)

f ( t ).

ττ

τ

ττ

τ

τ

δ

τ

τ
τ

∞ ∞

−∞ −∞→

+

−→

→

→

− = −

=

=

=

=

∫ ∫

∫

  (2.2.1)

This shows that a continuous function ( )f t  can be 
represented as a combination of infinitely many shifted and 
scaled Dirac delta functions. In other words, a continuous 
function can be modeled as a combination of infinitely many 
discrete impulses or points, or more formally: 
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 f ( t ) ( t ) f ( )dδ τ τ τ
∞

−∞
= −∫ .  (2.2.2) 

Let us say we have a linear system, whose impulse response 
or point spread function is ( )h t ; that is, if the input is ( )tδ , the 
output of the shift-invariant system will be ( )h t . Now, stop 
reading and consider for a while how you should compute the 
continuous output ( )g t  of the system for a general continuous 
input function ( )f t ? 

Since for the input ( )tδ  the output of the system is ( )h t , we 
have the following inferences: for the input ( )tδ τ−  the 
output of the system is ( ) ( )g t h t τ= −  by the shift-

invariability; for the input ( ) ( )f tτ δ τ−  the output of the 

system is ( )( ) ( )g t f h tτ τ= −  by the homogeneity property; 

and finally, for the input f ( t ) f ( ) ( t )dτ δ τ τ
∞

−∞
= −∫  the 

output must be g( t ) f ( )h( t )dτ τ τ
∞

−∞
= −∫  by the additivity 

property. This is how ( )g t  is computed, and the involved 
integral is called a convolution. If we denote the input and 
output as ( )x t  and ( )y t  respectively, the above derivation 

can be visualized in the following figure. 
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Figure 2.1-1. Derivation of the continuous convolution 
formula by the properties of the continuous shift-invariant 
linear system. 

The convolution operation is often denoted by the operator 
“*”, and has the following properties: 

Identity:  

 f ( t ) ( t )* f ( t );δ= .   (2.2.3) 

Note that you can easily verify the following: 

 f ( t c ) ( t c )* f ( t );δ− = −  for a constant c.  (2.2.4) 

Commutativity: 

 g( t ) h( t )* f ( t ) f ( t )* h( t )= = .  (2.2.5) 

Associativity: 
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 [ ] [ ]1 2 3 1 2 3f ( t )* f ( t ) * f ( t ) f ( t )* f ( t )* f ( t )= .  (2.2.6) 

Distribution:  

[ ]1 2 3 1 2 1 3f ( t )* f ( t ) f ( t ) f ( t )* f ( t ) f ( t )* f ( t )+ = + .  (2.2.7) 

Note that these properties also hold for a regular 
multiplication operation. In a good sense (to become clearer 
when we learn the convolution theorem), the convolution 
operation is an extension of multiplication. Also, this 
convolution operation and all its properties can be readily 
extended to multi-dimensional cases. 

Let us look at an example how to compute the convolution in 
the 1D case. Suppose that we have two Gaussian functions: 

 

2
1
2
1

2
2
2
2

2
1 1 1 1

1

2
2 2 2 2

2

1
2

1
2

( x )

( x )

f ( x ) G ( x, , ) e

f ( x ) G ( x, , ) e

µ
σ

µ
σ

µ σ
πσ

µ σ
πσ

−
−

−
−

= =

= =

 

 
Then, the convolution of f1(x) and f2(x) can be directly 
expressed as 

 

2 2
1 2
2 2
1 2

2 2 2 2
2 1 1 2

2 2
1 2

1 2

2 2

1 2

2

1 2

1 1
2 2

1
2 2

( ) ( x )

( ) ( x )

f ( x ) f ( x )* f ( x )

e e d

e d

τ µ τ µ
σ σ

σ τ µ σ τ µ
σ σ

τ
πσ πσ

τ
πσ πσ

− − −∞ − −

−∞

− + − −∞ −

−∞

=

=

=

∫

∫
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Let 2 2
1 2σ σ σ= +  and 1 2µ µ µ= + , it can be shown through 

several omitted steps (you can try to fill in the gap) that  
2

22
1 2

1
2

( x )

f ( x ) f ( x )* f ( x ) G( x, , ) e
µ
σµ σ

πσ

−
−

= = = . 

That is, the convolution of Gaussian functions is also a 
Gaussian function.  On the other hand, according to the 
identity property, the convolution of a delta function and a 
Gaussian function is also a Gaussian function. It suggests that 
the Gaussian function is the stable shape in the convolution 
process. Then, you may correctly guess that the convolution of 
an infinitely many “regular” functions will approach a 
Gaussian function. 

SECTION 2.3. DISCRETE CONVOLUTION 

Our world is both continuous and discrete, either in daily life 
or by physical laws. The temperature varies continuously but 
we typically measure it at discrete points of time. According to 
quantum mechanics, matter can act as both waves and 
particles. Up to now, we have focused on continuous functions. 
The counterpart of a continuous function is a discrete 
function. Modern computers are discrete by nature and work 
by digital logic. Hence, it is important to work with discrete 
functions. 

For a discrete linear system, we denote its input by ( )x n  and 

its output by ( )y n , where n  is the index for discrete points 

such as in space and/or time. The superposition principle or 
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the additivity and homogeneity properties should hold for the 
discrete system to be called linear. Similarly, we can define a 
shift-invariant linear system with an impulse response ( )h n  

when a discrete impulse ( )nδ  defined as 

 
1 0
0 0
, n ;

( n )
, n .

δ
=

≡  ≠
   (2.3.1) 

Just like in the case of a continuous shift-invariant linear 
system, a key question is how to find the system output ( )y n  

from the impulse response ( )h n  and an input ( )x n ? 

Not surprisingly, the same steps used in the preceding section 
apply. Let us work this process through step by step. Since for 
the input ( )nδ  the output of the system is ( )h n , for the input 

( )n kδ −  the output of the system is ( ) ( )y n h n k= −  by the 

shift-invariability; for the input ( ) ( )x k n kδ −  the output of 

the system is ( ) ( ) ( )y n x k h n k= −  by the scaling property; 

and finally, for the input 
n

x( n ) x( k ) ( n k )δ
∞

=−∞

= −∑  the output 

must be  

 
n

y( n ) x( k )h( n k )
∞

=−∞

= −∑    (2.3.2) 

by the additivity property.  
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 (a)  (b) 
 

 (c) 
Figure 2.2-2. Example of the discrete convolution. (a) Two 
functions ( )a n  and ( )b n , (b) ( )b n  is flipped, corresponding 

to “ k− ” in b( n k )−  of the convolution formula, and (c) ( )b n  
is right shifted for 9 different n values respectively, and after 
shifting the corresponding elements in ( )a n  and ( )b n  are 
multiplied to obtain partial products respectively and summed 
together to find the convolution value for each n . 

To visualize this process, let us perform a “hands-on” discrete 
convolution. Suppose that we have two discrete functions, 



33 

 
which are two sequences of data each of which contains five 
numbers. Let us denote them as ( )a n  and ( )b n  respectively, 

and each function is conveniently viewed as being associated 
with the five fingers of your left and right hands respectively. 
In this case, the convolution operation is defined by

n
c( n ) a( k )b( n k )

∞

=−∞

= −∑ , and visualized in Figure 2.2-2. 

To be more specific, let ( ) ( )5, 4, 3, 2, 1a n =  and

( ) ( )1, 2, 3, 4, 5b n = . MATLAB Their convolution 

result can be manually computed or obtained using a MATLAB 
code, with the result shown in Figure 2.2-3. 

 
Figure 2.2-3. Discrete convolution performed using MATLAB 
for two discrete functions ( ) ( )5, 4, 3, 2, 1a n =  and

( ) ( )1, 2, 3, 4, 5b n = . 
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SECTION 2.4. REMARKS 

For discrete shift-invariant linear systems and discrete 
convolutions, all the properties in the continuous case have 
straightforward counterparts. In particular, the discrete shift-
invariant linear systems and discrete convolutions can be 
readily extended to 2D or 3D cases, which are most common 
settings for biomedical imaging. In other words, a 2D or 3D 
imaging system can be often viewed as a spatially invariant 
linear system characterized with an impulse response or point 
spread function p( r )  where the location vector r  can be 2D 
or 3D, and the output image y( r )  of the imaging system can 
be expressed as the convolution of the point spread function 
p( r )  and the input scene x( r )  to the system: 
y( r ) p( r )* x( r )=
   . 

In the case of 2D CT imaging, the point spread function of a CT 
scanner can be approximated as a Gaussian function

0p( r ) g( r , , )σ=
   (with mean zero and standard deviation σ

), which can be analytically estimated or experimentally 
measured. An interesting question is to estimate x( r )  from a 
reconstructed y( r )  based on 0y( r ) g( r , , )* x( r )σ=

   . This 
is to undo the effect of convolution, which is called a 
deconvolution or deblurring process. Previously, it was 
mentioned that convolution is a type of multiplication. Thus, 
deconvolution must be a type of division. This analogy will be 
rigorously justified with the convolution theorem to be 
learned later on. Note that when a convolution or blurring 
process is in 3D, deconvolution or deblurring can be done in 
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either 3D, 2D, or even just 1D. An example of longitudinal (1D) 
deconvolution is shown in Figure 2.2-4, in which 
longitudinal/vertical blurring was dominant, and significantly 
improved after deconvolution using Wiener filtering 
(Schlueter, Wang et al. 1994). 

     (a)   (b) 
Figure 2.2-4. Example of spiral CT image deblurring. (a) A 
coronal slice of spiral CT with 5mm collimation and unit pitch 
and (b) a de-blurred image after Wiener filtering with α=1 
(Schlueter, Wang et al. 1994). 

Also, we would like to mention that convolution and cross-
correlation are closely related concepts. For two discrete 
functions ( )a n  and ( )b n , the convolution is defined by 

k
c( n ) a( k )b( n k )

∞

=−∞

= −∑ , and we mentioned before that 

" k"−  in b( n k )−  signifies that the discrete function ( )b n  is 

flipped before shifting by n . Nevertheless, ( )b n  is an 

arbitrary function; if we make ( )b n  the flipped version of its 

original version in the first place, the flipping operation 
indicated by the minus sign in " k"−  would be unnecessary. 
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In this case, we have 
k

c( n ) a( k )b( n k )
∞

=−∞

= +∑ . To make the 

difference clear between " k"−  and " k"+ , we call  

 
k

c( n ) a( k )b( n k )
∞

=−∞

= +∑    (2.4.1) 

the cross-correlation between discrete functions ( )a n  and 

( )b n , instead of the convolution between them. However, 

there is no essential difference between convolution and 
cross-correlation as far as the capability of information 
processing is concerned. 

Suppose that a discrete function ( )b n  is of a finite length, we 

view its shifted version is simply another discrete function, 
then either the convolution or cross-correlation is in the 
following form: 

 n
k

c( n ) a( k )b ( k )
∞

=−∞

= ∑ ,  (2.4.2) 

or without loss of generality  
1

K

k
c a( k )b( k )

=

=∑  where K  is a 

positive integer.  

Recall the definition of inner product (if you forget it, see the 

next chapter). Clearly, the sum 
1

K

k
c a( k )b( k )

=

=∑ is an inner 
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product. For the inner product we have the well-known 
Cauchy-Schwarz inequality 

 
2

2 2

1 1 1

K K K

k k k
a( k )b( k ) a ( k ) b ( k )

= = =

 
≤ 

 
∑ ∑ ∑   (2.4.3) 

while the equality holds for a( k ) b( k )η=  where η  is a 
fixed constant. This inequality can be proved as follows. 

To prove the Cauchy-Schwarz inequality, let us solve for

( ) ( )
2

2 2 2

1 1
2 0

K K

k k
a( k )x b( k ) a ( k )x a( k )b( k )x b ( k ) .

= =

− = − + =∑ ∑

We must have ( )
2

2 2

1 1 1
4 4 0

K K K

k k k
a( k )b( k ) a ( k ) b ( k )

= = =

− ≤∑ ∑ ∑ . 

Clearly, ( )
2

2 2

1 1 1
4 4 0

K K K

k k k
a( k )b( k ) a ( k ) b ( k )

= = =

− =∑ ∑ ∑ holds if 

a( k ) b( k )η= for a constant η . Please prove that the equality 
holds only if a( k ) b( k )η= . 

An important insight from the Cauchy-Schwarz inequality is 
that the cross-correlation between two discrete functions 
( )a n  and ( )b n  will be maximized if na( k ) b ( k )η=  for a 

constant η  when both 2

1

K

k
a ( k )

=
∑  and 2

1

K

k
b ( k )

=
∑  are given. The 

maximized response indicates a matching of the two signal 
shapes or a detection of a signal (for example, ( )b n ) hidden 

in a background function (for example, ( )a n ). In the 2D case, 

the cross-correlation operation can be used to extract various 
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local features such as edges. To detect each type of local 
features, such as edges at a particular orientation, we need a 
corresponding matching function, which is also referred to as 
a matching filter. 

 
 
Figure 2.2-5. Cross-correlation for signal detection (Wray 
2018). (a) A background signal and a target signal are 
colored in blue and red respectively, and (b) the cross-
correlation peak indicating the location of the target signal 
buried in the background signal. 

 

http://www.michw.com/tag/matlab/
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This utility for signal matching is shown in Figure 2.2-5 (Wray 
2018). The cross-correlation operation can be extended to 2D 
or spaces of even higher dimensionalities. Feature detection 
operations, namely matching filtrations, can be performed in 
a fashion similar to what in Figure 2.2-5.  
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CHAPTER 3. FOURIER SERIES 
In the previous chapter, we have shown that a continuous 
function f ( t ) can be represented with infinitely many shifted 

and scaled Dirac delta functions: f ( t ) ( t ) f ( )dδ τ τ τ
∞

−∞
= −∫ . 

In other words, the shifted delta functions are building blocks, 
which can be scaled and summed up to any continuous 
function. Each of the building blocks is extremely narrow and 
highly peaked.  

In this and next chapters, we will show that a periodic or non-
periodic continuous function can be represented as a Fourier 
series or Fourier transform respectively. In the Fourier 
analysis, the building blocks are sinusoidal curves with 
different frequencies and phases. These sinusoidal 
components can be also scaled and summed up to 
approximate a continuous or piece-wise continuous function. 
However, unlike delta functions, sinusoidal functions are 
infinitely long and very smooth. 

SECTION 3.1. HIGH DIMENSIONAL SPACE 

It is a mystery why we live in space and time, and why space 
is 3D (there are some arguments for the rationale of 3D, for 
example (Atkinson 2018)).  From 0D to 3D, we have point, 
line, plane, and space respectively. In a more general / 
extended space NR  of finite dimensionality N, an arbitrary 
point is specified by a vector { }iA a=



, 1i , ..., N= . An 
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arbitrary line in the same space can be determined by a non-
zero vector { }iB b=



, 1i , ..., N= , and the zero vector 

{ }0O =


, and denoted as 

 { }iL( k ) kb ,k R= ∈    (3.1.1) 

In addition to points and lines, hyperplanes and other 
geometric objects can be also defined in NR . Of fundamental 
important are how to define the distance and angulation in 

NR . Let us consider two vectors { }iA a=


 and { }iB b=


, 

1i , ..., N= .  

The distance in NR  between these two points is defined as 

 ( )2

1

N

i i
i

D( A,B ) a b
=

= −∑
 

 , (3.1.2) 

and as a special case the distance between a vector { }iA a=


and the zero vector { }0O =


 is the length of A


, also referred 

to as its 2L  norm, and defined as 

 2

1
0

N

i
i

A D( A, ) a
=

≡ = ∑
  

.   (3.1.3) 

A special type of angulation in NR  is particularly important: 
orthogonality (i.e., being perpendicular to each other). With 
the inner product operation we mentioned in the previous 
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chapter, the concepts of angulation and orthogonality can be 
defined in NR  so that geometric intuitions we have in 3D can 
be fully carried over to higher dimensions. Mathematically, 
the inner product of two vectors { }iA a=



 and { }iB b=


 are 

defined as  

 
1

N

i i
i

A B a b
=

⋅ = ∑
 

.   (3.1.4) 

Next, let us see how the inner product is intrinsically related to 
angulation and orthogonality. 

You can assume 2N = for easy visualization. Imagine that we 
want to project an N-dimensional vector A



 onto the line L 
associated with an N-dimensional vector B



 as defined by Eq. 
(3.1.1). What do we mean by projecting an N-dimensional 
vector A



 onto the line L ? We mean to find a point on L so that 
the distance between the point and the tip of the vector A



 is 
minimized. Mathematically, this is to optimize the following 
functional with respect to k :  

 ( ) ( )22

1

N

i i
i

D A,k B a kb
=

= −∑
 

 

Setting the first derivative of the squared distance to zero, we 

immediately have 2
A Bk
B

⋅
=
 



. Then, we can compute the 

distance P  from the zero vector { }0O =


to the projected 
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point (i.e., the projected tip of the vector A



) determined by 

2
A Bk
B

⋅
=
 



 as A BP k B
B
⋅

= =
 




. The distance P  can be 

geometrically considered as the length of the vector A


 
(computed according to Eq. (3.1.3)) multiplied by a perceived 
angle θ  between the vectors A



 and B


. That is, 

A BP k B A cos
B

θ⋅
= = =

 




. In other words, the angle θ  

should be defined as 

 
A Bcos
A B

θ ⋅
=
 

 
   (3.1.5) 

Thanks to the above geometric interpretation of the inner 
product, the Euclidian geometry can be extended from 
2D/3D to high dimensionality.  

A high dimensional space is also called a vector space. Several 
basic properties are in order: 

Non-negativity: 

0A A⋅ ≥
 

 and 0A A⋅ =
 

 if and only if 0A =
 

; (3.1.6) 

Symmetry: 

A B B A⋅ = ⋅
  

; (3.1.7) 

Homogeneity: 

A B ( A B )α α⋅ = ⋅


 

 for any scale α ; (3.1.8) 
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Additivity: 

A ( B C ) A B A C.⋅ + = ⋅ + ⋅
     

 (3.1.9) 

 
The most natural building blocks in the space RN is N unit 
vectors: 

1 2

1 0 0
0 1 0

0 0 1

Ne , e , e

     
     
     = = =
     
     
     

  



  

. (3.1.10) 

Such a set of building blocks or unit vectors is called an 
orthonormal basis, since any two different unit vectors are 
orthogonal as evidenced by their inner project being zero, and 
the length of each vector is normalized to one. Then, an 
arbitrary vector { }iA a=



in NR can be expressed using the 

orthonormal basis as 

1 1 2 2 N NA a e a e a e= + + +


  

   (3.1.11) 

Each of the coefficients of the unit vectors can be computed with 
an inner product: 

1 2i ia A e , i , , ,N .= ⋅ =




  (3.1.12) 

Note that the orthonormal basis is not unique; any 
orthonormal basis can be rotated to have a different but 
equivalent presentation of any vector.  
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Just for fun, imagine to rotate a unit vector with respect to the 
origin defined by the zero vector in all possible ways in the 
space NR , and the tip of the unit vector will trace a N-
dimensional unit sphere 

{ }1NS x R : x≡ ∈ =
  . 

Note that all the spaces we have focused on so far are of finite 
dimensionality. However, a space can certainly have an 
infinite dimensionality. Why not to stretch our imagination 
into infinite dimensional spaces? First, we can try to dream 
about an infinite dimensional unit sphere. In an infinite 
dimensional space, point, line, plane, inner product, distance, 
angle, orthonormal basis, projection of one vector onto 
another vector, representation of a vector in terms of an 
orthonormal basis, and other relationships should still make 
sense. As an example of transition from a finite dimensional 
space to an infinite dimensional space, vectors { }iA a=



 and 

{ }iB b=


become functions A( t )  and B( t ) , the inner 

product 
1

N

i i
i

A B a b
=

⋅ = ∑
 

 become A B A( t )B( t )dt
∞

−∞
⋅ = ∫  (or 

without loss of generality 
1

0
A,B A( t )B( t )dt= ∫  over a unit 

interval [0,1]), and A( t ) is normalized when 2 1A ( t )dt
∞

−∞
=∫  

(or 
1 2

0
1A ( t )dt =∫  if A( t )  is defined over [0,1]). It should be 

noted that there are fundamental differences between finite 
and infinite dimensional spaces, just like 1 and ∞ are rather 
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different.  At your leisure time, you can look at the so-called 
“Hilbert Hotel” to delve more into the use of infinity 
(Wikipedia-Hilbert-Hotel 2018). 

SECTION 3.2. FOURIER SERIES IN REAL FORM 

Since vectors can be generalized into functions, functions can 
be viewed as vectors in an infinite dimensional space over the 
whole number axis or a finite interval such as [0, 1] without 
loss of generality. For all real-valued functions that are 
square-integrable over [0, 1], which form the space

( )2 0 1L [ , ], R , an orthonormal basis is given as follows: 

1 2 2 2 2 1 2, cos( nt ), sin( nt ), n , ,π π = (3.2.1) 

In other words, any function ( )f t  in this space can be, in a 

“good sense” (We will know more about the “good sense” in 
the last section, but stay assured that for the continuous parts 
of a function, its Fourier series expression is indeed accurate.), 
expressed as the following summation referred to as the 
Fourier series: 

 0

0 0
2 2

2 n n
n n

af ( t ) a cos( nt ) b sin( nt )π π
∞ ∞

= =

= + +∑ ∑  (3.2.2) 

where the use of 0

2
a

 is for convenience (to be seen later). 

Although we focus on the representation of ( )f t  over [0, 1], 
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the sinusoidal terms on the right hand side of Eq. (3.2.2) work 
well for any real value of t . That is, the function defined over 
[0, 1] can be extended over the whole number axis. Hence,
( )f t  can be viewed as a periodic function for t ( , )∈ −∞ ∞ , 

with a unit period. 

The claimed orthonormality can be established by evaluating 
the following six inner products: 

 

1 1 1

2 1 0 1 2

2 1 0 1 2

2 2 0 1 2 1 2

, ;

cos( nt ), , n , , ;

sin( nt ), , n , , ;

cos( mt ),sin( nt ) , m , , , n , , ;

π

π

π π

=

= =

= =

= = =





 

 
0

2 2 1
2

, m n,
cos( mt ),cos( nt )

m n;
,

π π
≠

=  =

 

 
0

2 2 1
2

, m n,
sin( mt ),sin( nt )

m n.
,

π π
≠

=  =

  (3.2.3) 

The evaluation is straightforward, and can be performed as 
your exercise. 

With the representation in the form of Eq. (3.2.2) for
t ( , )∈ −∞ ∞ , we have three types of terms on the right hand 
side. The first is an overall background offset, also referred to 
as the direct component. The second part summing up cosine 
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components reflects the even part of ( )f t . The third part 

combining sine components gives the odd part of ( )f t . Note 

that the direct component is a special case of an even function, 
and can be grouped into the even part of the function. This is 
consistent to our knowledge that any function can be always 
decomposed into its even and odd parts: 

2 2even odd
f ( t ) f ( t ) f ( t ) f ( t )f ( t ) f ( t ) f ( t ) .+ − − −   = + = +      

 

For a given function ( )f t over [0, 1], how shall we compute the 

coefficients na  and nb  of its Fourier series? This can be done 

easily utilizing the orthonormality relationships of the 
sinusoidal functions. Specifically, for 1 2n , ,= we have 

 

10
0

1

0
1

0

1
2

2 2 2 2

2 2 2 2

n

n

a, f ( t ) f ( t )dt;

cos( nt ), f ( t ) f ( t )cos( n t)dt a ;

sin( nt ), f ( t ) f ( t )sin( n t)dt b .

π π

π π

= =

= =

= =

∫

∫
∫

 

That is, 

 

1

0
1

0

2 2 0 1

2 2 1 2

n

n

a f ( t )cos( n t)dt , n , ,

b f ( t )sin( n t)dt , n , ,

π

π

= =

= =

∫
∫





 (3.2.4) 
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where 0a  is computed with the same formula as for 0na ≠ , 

which is the convenience we mentioned earlier. 

As an example, let us analytically expand the triangular 
function into the Fourier series. The triangular function is a 
function shaped like a triangle with the following formula: 

 ( ) 0 5 0 5 0
0 5 0 0 5

t . , t [ . , ),
f t

t . , t [ , . ].
+ ∈ −

= − + ∈
 (3.2.5) 

Using Eq. (3.2.4) for the coefficients na  and nb , the Fourier 

series can be written as 

( )
[ ]22

1

20 25 2 2 1
2 1n

f ( t ) . cos ( n )t
n

π
π

∞

=

= + +
+

∑ . 

For your exercise, please verify this Fourier expansion 
analytically.  

Figure 3.2-1 helps visualize the representation of a function in 
its Fourier series, in which a continuous function is 
decomposed into a number of sinusoidal components. As your 
exercise, please do a similar rendering for the triangular 
function we just expanded. 
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Figure 3.2-1. Decomposition of a continuous function (in 
red) into a number of sinusoidal components (in blue). 

SECTION 3.3. FOURIER SERIES IN COMPLEX 
FORM 

In the preceding section, we have described the Fourier series 
in the real form. In this section, we will convert the real form 
into a complex counterpart. While these two forms are 
mathematically equivalent, the complex form has certain 
merits. You will see quickly that the complex form is 
significantly more compact. The length of the Fourier series 
expression in the complex form is about 1/3 of the real 
counterpart. Thus, it is often more convenient to use the 
complex form in derivation and analysis. In addition to this 
convenience, the building block / basic unit of the complex 
Fourier analysis is the complex exponential function i tAe ω , 
which plays a fundamental role in analyzing numerous 
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problems such as solving physical equations governing 
mechanical, electromagnetic, and quantum phenomena. 

To have a deeper understanding of this perspective, let us 
briefly review complex analysis, a branch of mathematics 
dealing with complex numbers, complex variables, and 
complex-valued functions. In human civilization, the concept 
of numbers has been continuously evolving. The real number 
axis was established through several steps, including positive 
integers, zero, negative integers, rational and irrational 
numbers. While rational numbers are countable, irrational 
numbers are not. Whether it is rational or irrational, a real 

number always has a clear geometric meaning, such as 2  is 
the length of a hypotenuse of a right triangle. 

However, in the real number domain there is no number 

whose square is -1. Thus, it appears that 1−  makes no sense 

at all. It is an example of divine inspiration that 1i = −  was 
introduced as the unit of an imaginary number (how dare you 

trust the absurd relationship 1i = −  in the first place!). 
Subsequently, conventional arithmetic operations were 
extended to take complex numbers. A complex number is 
expressed as z a bi,= +  where a  and b  are real numbers, 
giving the real and imaginary parts of the complex number z 
respectively; i.e., Re(z)=a and Im(z)=b. The complex 
conjugate of z a bi= +  is defined as z z* a bi≡ ≡ −  where 
“*” denotes the complex conjugate operation. The two 
components of z a bi= +  can also be viewed as two 
coordinates of the complex number in the complex plane, 
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corresponding to the Cartesian form. The polar form of  
z a bi= +  is defined as iz Ae θ= , where the amplitude  

2 2A z a b≡ ≡ + and the polar angle θ  can be properly 

defined for 0z ≠ . 

Complex numbers can be used for addition, subtraction, 
multiplication and division: 
 

 

( ) ( ) ( )
( )( ) ( )

2 2 2 2

a bi c di ( a c ) b d i;

a bi c di ( ac bd ) bc ad i;

a bi a bi c di ac bd bc ad( ) i.
c di c di c di c d c d

+ ± + = ± + ±

+ + = − + +

+ + − + − = = +  + + − + + 

 

 

Based on these extended rules for arithmetic operations, real 
functions can be generalized to complex-valued functions. For 
example, a Tayler expansion in the real number domain can 
be extended to the counterpart in the complex domain. In 
particular, we have the complex exponential expansion 

 
0

n
z

n

ze
n!

∞

=

=∑ . (3.3.1) 

As a special case, we have 

 
( )

0

n
i

n

i
e cos i sin

n!
θ θ

θ θ
∞

=

= = +∑ , (3.3.2) 
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which is known as the Euler formula. In light of the Euler 

formula, 1i = −  can be viewed as a 90° -rotation operation. 

Indeed, the unit vector ( )1 1 0 te ,=
  where t  indicates a 

transpose operation can be rotated by 90°  twice to become

( )1 1 0 te ,− = −
 ; i.e., 2 1i = −  (thus, the imaginary number is 

not absurd at all!). 

With the Euler formula, we have 
 

 
2 2

i i i ie e e ecos and sin .
i

θ θ θ θ

θ θ
− −+ −

= =  (3.3.3) 

Also of relevance to Fourier analysis in the complex form, the 
inner product operation needs to be properly defined in the 
complex space.  An immediate consideration is that when an 
inner product is performed between a function/vector and 
itself, a real value is expected, which should be the squared 
length of the function/vector. Therefore, the complex 
conjugate operation is needed to produce the amplitude of a 
complex-valued function/vector, ignoring its phase. This 
requirement suggests that the inner product operation of 
two vectors in a complex space should be defined as *X Y⋅

 

 
due to the fact that 2 1i = − , instead of the simple-minded 
version X Y⋅

 

.  

Similarly, the inner product of two complex-valued functions 
can be defined as  
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 *f ( t ),g( t ) f ( t )g ( t )dt
∞

−∞

= ∫   (3.3.4) 

or in a special case over the unit interval [0, 1] we have 
 

 
1

0

*f ( t ),g( t ) f ( t )g ( t )dt= ∫ . (3.3.5) 

As a further argument for the complex conjugate operation in 
the inner project, without loss of generality let us consider two 
vectors each of which has only two complex components. 
 

 1 1

2 2

a b i
X

a b i
+ 

=  + 



 and 1 1

2 2

c d i
Y

c d i
+ 

=  + 



. 

 
The lengths of these two vectors are  
 
 2 2 2 2 2 2 2 2

1 1 2 2 1 1 2 2X a b a b and Y c d c d= + + + = + + +
 

, 

respectively. These two vectors can be summed to form a new 
vector 

 
( )
( )

1 1 1 11 1 1 1

2 2 2 22 2 2 2

a c b d ia b i c d i
Z X Y .

a c b d ia b i c d i
 + + ++ +   

= + = + =      + + ++ +     

  

 

If X


 and Y


are orthogonal, the length of Z


is expected to be 
 

( ) ( ) ( ) ( )2 2 2 2
1 1 1 1 2 2 2 2Z a c b d a c b d= + + + + + + +



. 

 
Given the assumption that X



 and Y


 are orthogonal, we 

should have 
2 2 2

Z X Y= +
  

, which is equivalent to 
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 ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2 0a c b d a c b d ,+ + + =  

where again requires a complex conjugate operation in the 
inner product.  

Note that even if we do not take the conjugate operation in the 
complex inner products (3.3.4) and (3.3.5), the point-wise 
multiplication and subsequent integration are still meaningful 
in terms of “measuring” one function with the other. With 
abuse of notation ,⋅ ⋅ , we can have un-conjugated inner 

products as follows: 

 f ( t ),g( t ) f ( t )g( t )dt
∞

−∞

= ∫ , and  (3.3.6) 

 
1

0

f ( t ),g( t ) f ( t )g( t )dt= ∫ . (3.3.7) 

When functions are real, un-conjugated inner products are 
just the same as the previously-defined inner products. 
However, when functions are complex-valued, un-conjugated 
inner products are different from the complex inner products 
(3.3.4) and (3.3.5). We will use the un-conjugated inner 
product Eq. (3.3.6) in Section 5.4 when we discuss the Fourier 
transform of a series of delta functions. 

Now, we are ready to produce the complex form of the Fourier 
series Eq. (3.2.2). According to Eq. (3.3.3), we have 
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 ( )
2 2

2
2

i nt i nte ecos nt
π π

π
−+

=  and 

 ( )
2 2

2
2

i nt i nte esin nt
i

π π

π
−−

=  (3.3.8) 

An elegant fact is that 2i nte π  for n  being all integers form an 
orthonormal basis. That is, 

 2 2 1
0

i mt i nt , m n;
e ,e

, m n.
π π =

=  ≠
 (3.3.9) 

 
This claim can be easily verified based on our previously 
established orthonormal basis (3.2.1). Then, we immediately 
have the Fourier series in the complex form: 
 

 2i nt
n

n
f ( t ) c e π

∞

=−∞

= ∑ , and

 (3.3.10) 

 
1

2 2

0

i nt i nt
nc f ( t ),e e f ( t )dtπ π−= = ∫  

 ( ) ( )
1 1

0 0

2 2cos nt f ( t )dt i sin nt f ( t )dtπ π= −∫ ∫ , 

and we have 

 
0

0
2 2

0
2

n n

n

a bi , n ;
c

a , n .

 − ≠= 
 =


 (3.3.11) 

 
For a real function ( )f t , we have 
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1

2 2

0

** i nt i nt
n nc f ( t ),e f ( t )e dt c .π π

−= = =∫  (3.3.12) 

Note that this equation shows the symmetry of the coefficients 
of the Fourier series in the complex domain. 
 
As an exercise, let us expand the following function: 
 

 
1 0 0 5
1 0 5 1
, t [ , . ),

f ( t )
, t [ . , ],

∈
= − ∈

 

 
into the Fourier series in the complex form. Using Eq. (3.3.11)
, we have 
 

( )
1 0 5 1

2 2 2

0 0 0 5

0 0
1 1 0

.
i nt i nt i nt

n i n
.

, n ;
c f ( t )e e e

e , n .
i n

π π π
π

π

− − −
=

= = − = 
− ≠

∫ ∫ ∫  

Therefore, 

 ( )( )2

0

4 1 2 2 1
2 1

i nt
n

n n
f ( t ) c e sin n t .

n
π π

π

∞ ∞

=−∞ =

= = +
+∑ ∑  

Figure 3.3-1 shows that the more the Fourier components we 
use, the more accurately the original function can be 
approached. 
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Figure 3.3-1 illustrates the fact that ( )f t  can be approximated 
more and more closely with an increasing number of sinusoidal 
components. 
 
If ( )f t  is defined on a general finite interval [ a,b ] , how 
could we expand the function into a Fourier series in the 
complex form? This is actually a trivial problem.  We can 
introduce a mapping ( )t b a x a= − +  from [0, 1] to [a, b], and 
let T=b-a, then g( x ) f ( t )=  can be directly put into the 
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Fourier series  2i nx
n

n
g( x ) c e π

∞

=−∞

= ∑  where for any integer n, 

1
2 2

0

i nx i nx
nc g( x ),e e g( x )dxπ π−= = ∫ . In other words, 

 
2

2
t ai n

i nx T
n n

n n
f ( t ) g( x ) c e c e

π
π

− ∞ ∞  
 

=−∞ =−∞

= = =∑ ∑ , that is, 

 
2

2 2

ti n
T

n
n

T Tf ( t ) c e , t [ , ] ,
π  ∞  

 

=−∞

= ∈ −∑   (3.3.13) 

where 

 
21 t ab i n

T
n

a

t ac e g dt
T T

π − −  
  − =  

 ∫ , 

that is, 

 
21 t ab i n

T
n

a

c e f ( t )dt.
T

π − −  
 = ∫  (3.3.14) 

Since the largest common period of the complex-valued 
orthonormal basis is T, the function ( )f t defined on the 
interval [ a,b ] is periodically extended towards -∞ and +∞. 
Since it is periodic, we can put the origin of the coordinate 
system at the starting point of a period or the mid-point of the 
period so that the corresponding copy of ( )f t is defined on 

0[ ,T ]  and
2 2
T T[ , ]−  respectively.  

Although we have most focused on a function in a single 
interval/period, whatsoever features we have in this 
interval/space exist simultaneously in other 
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spaces/universes, which reminds us of the multiverse theory 
or multi-worlds interpretation (Wikipedia-Multiverse 2018). 

SECTION 3.4. REMARKS 

Given an orthonormal basis of a space (say, 3D), any vector in 
this space can be uniquely represented in terms of the unit 
vectors in the orthonormal basis. The coefficients for a given 
vector can be simply computed as the inner products of the 
given vector and each of the unit vectors in the orthonormal 
basis. As shown in Figure 3.4-1, the representation with a 
given orthonormal basis is unique not only in a 3D space but 
also in any N-dimensional space RN.  

 
Figure 3.4-1. A vector can be uniquely represented with an 
orthonormal basis, and the coefficients are inner products of 
the vector and each member of the orthonormal basis. This 
way is valid in either a 3D or N-dimensional space. 
 

In the 3D case, we have 
 

 ( ) ( ) ( )x x y y z z

x
v y v e e v e e v e e ,

z

 
 = = ⋅ + ⋅ + ⋅ 
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and in the N-dimensional space we have 
 

 ( )
1

N

n n
n

w w e e
=

= ⋅∑   

. (3.4.1) 

In the case of the Fourier series representation of a function, 
the number of members in the sinusoidal orthonormal basis 
(or the complex-valued exponential orthonormal basis) is 
countable, and each member in the orthonormal basis is a 
continuous function that can be viewed as a vector with 
numerous components corresponding to the continuous 
change of the involved variable (uncountable; i.e., no way to 
index all the points over an interval ( a,b ) if a b≠ ). The 
Fourier series of an arbitrary practical function (for example, 
square integrable and piecewise continuous) is also a 
generalized vector (again, with uncountably many 
components). Hence, the computation of the Fourier series 
coefficients is nothing but performing inner products between 
the function to be expanded into the Fourier series and each 
member of the sinusoidal orthonormal basis.  

Geometrically, the inner product 
2

0

1 tT i n
T

nc e f ( t )dt
T

π  −  
 = ∫  is 

nothing but the projection of the function onto a member 
21 ti n

Te
T

π  
 
  of the orthonormal basis, as shown in Figure 3.4-2. 
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Figure 3.4-2. A function has a unique representation in an 
orthonormal sinusoidal or complex-valued exponential basis, 
with the coefficients determined by projecting the function 
onto each member of the orthonormal basis, which can be 
either a 1D sine or cosine function or even a complex-valued 
exponential basis function. 

Whether the Fourier series of a periodic function converges to 
the original function is not a trivial question, and has been an 
important topic in the field of harmonic analysis, a branch of 
pure mathematics. Such convergence analysis exemplifies 
mathematical sophistication, involving pointwise 
convergence, uniform convergence, absolute convergence, 
and so on. Here we only mention a fundamental theorem: 

Convergence Theorem: If a function ( )f t  is piecewise 

continuous, then its Fourier series at a discontinuous point 0t  

will produce the average of the functional values on both sides, 

which is ( ) ( )( )0 0
1
2

f t f t− + + .  

Hence, it is not surprising that the Fourier series exhibits the 
so-called Gibbs effect in which the convergence is pointwise 
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but non-uniform as evidenced by substantial ripples. The mid-
point convergence and the Gibbs effects are shown in Figure 
3.4-3. 

 
Figure 3.4-3. Convergence of the Fourier series of a piecewise 
continuous function. While at continuous points the values of 
the original function can be accurately reproduced, at each 
discontinuous point the Fourier series gives the average of the 
left and right limits of the function. 

 
To conclude this chapter, we mention that the Fourier series 
can be readily extended to the cases of multi-dimensional 
functions, be it real-valued or complex-valued. 

  



64 

 

CHAPTER 4. FOURIER TRANSFORM 
What we have learned in the preceding chapter is summarized 
as Eqs. (3.3.13) and (3.3.14), which is reproduced as follows:  

 
2

2 2

ti n
T

n
n

T Tf ( t ) c e , t [ , ] ,
π  ∞  

 

=−∞

= ∈ −∑  

Where 
2 2

2

1 tT / i n
T

n
T /

c e f ( t )dt
T

π  −  
 

−

= ∫ .  This Fourier series 

represents a well-behaved periodic function (such as a 
piecewise continuous function) with a period T  as a sum of 

infinitely many harmonic components 
21 ti n

Te
T

π  
 
  .  A natural 

problem is how to extend this Fourier analysis method from 
the special case of periodic functions to the general case of 
non-periodic functions. The solution to this problem is the 
central topic of this chapter. 

SECTION 4.1. FROM SERIES TO TRANSFORM 

To derive the Fourier transform from the Fourier series, our 
basic idea is to focus on one copy of a periodic function ( )f t  

over a symmetric interval
2 2
T T[ , ]− , then let T go to infinity. 

Certainly, the function should be kept square-integrable over 
this increasingly enlarged interval so that all involved 
mathematical operations are meaningful. For our purpose, a 



65 

 
periodic function with an infinite period is nothing but a non-
periodic function, since the function would be of our interest 
only within our reach, and we cannot go beyond -∞ or +∞. 

Over this interval
2 2
T T[ , ]− , 

2 ti n
T

n
n

f ( t ) c e
π  ∞  

 

=−∞

= ∑  with 

2 2

2

1 tT / i n
T

n
T /

c e f ( t )dt
T

π  −  
 

−

= ∫ . Inserting the coefficients into the 

Fourier series, we have 
 

 
2 2 2

2

1n nT / i t i t
T T

n T /

f ( t ) e f ( t )dt e
T

π π   ∞ −    
   

=−∞ −

 
=   

 
∑ ∫ . (4.1.1) 

The integrals on the right hand side of Eq. (4.1.1) give inner 
products at infinitely many discrete frequency points 

0 1 2nu , n ..., , , ,...
T

= = , and for a sufficiently large T , for all 

integer n  the interval for u  is dense on the whole number 
axis, and the distance between adjacent frequencies is 

infinitesimally small (
1u
T

∆ = ). Hence, for T sufficiently 

large, discrete coefficients is for the Fourier series becomes a 
continuous spectrum as follows:  

 ( ) 2i utˆF f ( t ) f ( u ) e f ( t )dtπ
∞

−

−∞

= ≡ ∫ , 

and ( )f t can be recovered using the Fourier series (again in 

the aforementioned good sense) as follows: 
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( )1 2 21i ut i ut

n

ˆ ˆ ˆf ( t ) F f ( u ) f ( u )e f ( u )e du.
T

π π
∞∞

−

=−∞ −∞

= = =∑ ∫  

In summary, we have the forward and inverse Fourier 
transforms: 

 

2

1 2

i ut

i ut

f̂ ( u ) F( f ( t )) e f ( t )dt ,

ˆ ˆf ( t ) F ( f ( u )) e f ( u )du.

π

π

∞
−

−∞

∞
−

−∞


= =



 = =

∫

∫
 (4.1.2) 

A well-behaved function in terms of t  and its Fourier 
transform in terms of u  form a Fourier transform pair; one 
can be computed from the other, denoted as ˆf ( t ) f ( u )⇔ . 
 
As an example, let us compute the Fourier transform of the 
rectangular function (also known as a gate function): 

 
1 1 2
0 1 2
, t / ;

( t )
, t / .

 <Π ≡  ≥
 (4.1.3) 

The Fourier transform of the rectangular function is directly 

computed according to Eq. (4.1.2): 

 ( )1 2
2 2

1 2

/
i ut i ut

/

sin uˆ ( u ) e f ( t )dt e dt .
u

π π π
π

∞
− −

−∞ −

Π = = =∫ ∫  

In terms of a sinc function ( ) ( )sin x
sinc x

x
 , we have 

 ( )ˆ ( u ) sinc uπΠ = . (4.1.4) 

A general rectangular function is as follows: 
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1 2
0 2T

, t T / ;
( t )

, t T / .
 <Π ≡  ≥

  (4.1.5) 

As an exercise, please find the Fourier transform of T ( t )Π  

directly or use the scaling property of the Fourier transform 
given in the following section. A few more examples are as 
follows: 

 
2 2t ue eπ π− −⇔   (Direct computation), (4.1.6) 

 1( t )δ ⇔   (Via the Fourier transform), (4.1.7) 
 1 ( u )δ⇔  (Via the inverse Fourier transform). (4.1.8) 
Please read Section 5.4 for more rigorous explanation on Eqs. 
(4.1.7) and (4.1.8). 

SECTION 4.2. FOURIER TRANSFORM PROPERTIES 

While there are multiple variant definitions of the Fourier 
transform, we keep using the following forms: 
 

 

2

2

i ut

i ut

f̂ ( u ) f ( t )e dt ,

ˆf ( t ) f ( u )e du.

π

π

∞
−

−∞

∞

−∞


=



 =

∫

∫
 (4.2.1) 

 
The Fourier transform pair opens a door to elegant 
relationships. Next we present some of the basic properties, 
then introduce several important theorems for Fourier 
transform. 
 



68 

 
The following basic properties are straightforward for the 
Fourier Transform: 
Linearity: 

For two functions f ( t )  and g( t )  with their Fourier 

transforms f̂ ( u )  and ĝ( u )  respectively, if 

h( t ) f ( t ) g( t )α β= + , then ˆ ˆ ˆh( u ) f ( u ) g( u )α β= +  
where α and β are scalers.  (4.2.2) 

Translation: 
If 0h( t ) f ( t t )= − , then 02i t uˆ ˆh( u ) e f ( u )π−= , where 0t  is 
a constant. (4.2.3) 

Modulation: 
If 02i u th( t ) e f ( t )π−= , then 0

ˆ ˆh( u ) f ( u u )= − , where 0u  is 
a constant. (4.2.4) 

Scaling: 

If h( t ) f ( t )α= , then 
1 uˆ ˆh( u ) f ( )
α α

= , where 0α ≠  is 

a constant. (4.2.5) 
Conjugation: 

If *h( t ) f ( t )= , then *ˆ ˆh( u ) f ( u )= − . (4.2.6) 
Evenness/Oddness: 

For a real function f ( t ) , if it is even,  f̂ ( u )  is real and 

even; if it is odd,  f̂ ( u )  is imaginary and odd. (4.2.7) 
 
The linearity property shows that the Fourier transform can 
be viewed as a linear system. Would you consider this system 
shift-variant or not? The answer is not, as evidenced by the 
translation property. Interestingly, any sinusoidal function 
(either sine or cosine) can be obtained by translating and 
scaling another sinusoidal function, and all these self-similar 
sinusoidal components can be combined to represent almost 
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all functions in the Fourier series (for a periodic function) or 
through the Fourier transform (for a non-periodic function). 
In a good sense, the translation and scaling, as symmetric 
operations, generate everything. 
 
Next, let us re-visit the concept of convolution by interpreting 
the convolution operation in the Fourier space. As it turns out, 
a convolution operation in a conventional space is equivalent 
to multiplication in the Fourier space. Mathematically, we 
have the following deep relationship. 
 
Convolution Theorem: 

For transform pairs ˆf ( t ) f ( u )⇔  and ˆg( t ) g( u )⇔ , 

we have ˆ ˆf ( t )* g( t ) f ( u )g( u )⇔ . (4.2.8) 
 
Proof: 
Let us start with the product in the Fourier space 

 2 2i us i utˆ ˆP f ( u )g( u ) f ( s )e ds g( t )e dtπ π
∞ ∞

− −

−∞ −∞

  
= =   

  
∫ ∫  

 ( )2i u s tf ( s )g( t )e dsdtπ
∞ ∞

− +

−∞ −∞

= ∫ ∫  

 ( )2i u s tf ( s )e ds g( t )dtπ
∞ ∞

− +

−∞ −∞

 
=  

 
∫ ∫ . 

Let l s t= + , then dl ds= , we have 

 2i ulP f ( l t )e dl g( t )dtπ
∞ ∞

−

−∞ −∞

 
= − 

 
∫ ∫  
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( )

2

2

i ul

i ul

f ( l t )g( t )dt e dl

f ( l )* g( l ) e dl.

π

π

∞ ∞
−

−∞ −∞

∞
−

−∞

 
= − 

 

=

∫ ∫

∫
 

Note that the convolution theorem is only valid for Fourier 
transform (i.e., a convolution is a multiplication only in the 
Fourier space). Could you figure out why? 

Recall that the image deconvolution or deburring problem 
that was mentioned before is to estimate an image x( r )  from 
its burred version y( r )  based on y( r ) g( r )* x( r )=

   , where  
g( r )  is the impulse response of an imaging system. 
According to the convolution theorem, now we know that the 
convolution or blurring in the image domain is the 
multiplication in the Fourier domain, and the deconvolution 
or deblurring in the image domain is, conceptually, the 
division in the Fourier space. Note that this becomes tricky 
when amplitudes of some Fourier components are small or 
zero, since divisions with small denominators are unstable. 
Hence, it is fair to say that the key to deconvolution or 
deblurring is to regularize this type of inverse problems with 
prior knowledge in the form of constraints on features of 
images that we expect to have. 

Parseval Theorem: 
 With a Fourier transform pair ˆf ( t ) f ( u )⇔ , we have 

22 ˆf ( t ) dt f ( u ) du
∞ ∞

−∞ −∞
=∫ ∫ . (4.2.9) 
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Proof: 
Let start from the original domain: 
 

 
2 *I f ( t ) dtdt f ( t ) f ( t )du

∞ ∞

−∞ −∞
= =∫ ∫  

( )
( )

2

2

*
i st

* i st

ˆf ( t ) f ( s )e ds dt

ˆf ( t ) f ( s )e ds dt

π

π

∞ ∞

−∞ −∞

∞ ∞ −

−∞ −∞

=

=

∫ ∫

∫ ∫

 ( )2i st * *ˆ ˆ ˆf ( t )e dt f ( s )ds f ( s ) f ( s )dsπ∞ ∞ ∞−

−∞ −∞ −∞
= =∫ ∫ ∫ . 

Given the fact that Fourier transform is a presentation of a 
function in the sinusoidal or complex-valued exponential 
orthonormal basis, Parseval’s identity is not surprising at all, 
as it geometrically means that the norm of the function (the 
length of the vector, which in this case with un-countably 
many components) in the original space remains the same if 
you measure it on the orthonormal basis. In simple words, the 
length of a ruler will remain the same regardless which 
Euclidian coordinate system (rotated or not) you use.  

Earlier we mentioned that amplitudes of some Fourier 
components are small or zero, and do you know why?  

According to the Parseval theorem, 
2

f̂ ( u ) du
∞

−∞∫  is a finite 

number, and therefore 
2

f̂ ( u )  must decay more rapidly than



72 

 
1 for u
u

→∞  ; otherwise, 
2

f̂ ( u ) du
∞

−∞∫  will not 

converge. More detailed analysis shows that there is a 
correlation between the decay rate of the Fourier spectrum 
and the differentiability of the original function. The smoother 
a function is, the faster its Fourier spectrum decays. 

SECTION 4.3. HIGH-DIMENSIONAL EXTENSION 

So far all the discussions on the Fourier transform are in the 
1D case, but the essential ideas and properties hold in the N-
dimensional case. The extension from the 1D to N-
dimensional case is not challenging. For example, the 2D 
Fourier transform pair can be defined as follows: 
 

 

( )

( )

2

2

i xu yv

i xu yv

f̂ ( u,v ) f ( x, y )e dxdy,

ˆf ( x, y ) f ( u,v )e dudv.

π

π

∞ ∞
− +

−∞ −∞

∞ ∞
+

−∞ −∞


=



 =

∫ ∫

∫ ∫
 (4.3.1) 

 
Suppose that we have a 2D rectangular function centralized at 
the origin of the 2D Cartesian coordinate system: 
 

 
1 2 2
0
, x A / and y B / ;

f ( x, y )
, Otherwise,

 < <
= 


 

 
Its Fourier transform can be directly computed as 
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 ( )
2 2

2

2 2

B / A/
i xu yv

B / A/

f̂ ( u,v ) e dxdyπ− +

− −

= ∫ ∫  

 ( ) ( )AB sinc Au sinc Bv .π π=  

A common utility of the 2D Fourier transform is to remove 
noise in an image as shown in Figure 4.3-1. A noisy image is 
first transformed into the Fourier space, in which high 
frequency components are mostly noise while low and 
intermediate frequency components form structures of 
interest. A filtering mask is placed in the Fourier space that 
keeps low and intermediate frequency components intact and 
zero out all high frequency components.  This filtered Fourier 
spectrum is then inversely transformed back to the original 
space, producing a smooth image without strong noise. 
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Figure 4.3-1. Image noise suppression using a Fourier 
transform based filtering operation. 

 
The above 2D formulation of the Fourier transform can be 
generalized into the N-dimensional Fourier transform pair 
as follows: 
 

 

( )

( )

2

2

N

N

i r u

R

i r u

R

f̂ ( u ) f ( r )e dr ,

ˆf ( r ) f ( u )e du ,

π

π

− ⋅

⋅

 =



=


∫

∫

 

 

  

  

 (4.3.2) 

 

where r and u  are vectors denoting locations in the original 
and Fourier spaces respectively. The key agent here is the 
single variable t r u= ⋅

 

, with which the effect of two N-
dimensional vectors are summarized as a single-valued 1D 
function. Geometrically, u  is a principal vector representing a 
particular N-dimensional wave, whose direction is the 
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direction of u  and whose frequency is specified by the 
amplitude of u  in the N-dimensional space. At any location r ,  
the value of this wave function is totally determined by the 
inner product r u ,⋅

 

 which is the projection of the location 
vector r onto the vector u  in the N-dimensional space. Again, 
the forward Fourier transform does nothing but computing 
the projection of an N-dimensional function f ( r )  onto an N-

dimensional complex-valued wave ( )2i r ue π ⋅
 

, a member in the 
N-dimensional orthonormal basis. 

Rotation Properties: 
For ˆf ( r ) f ( u )⇔

 

, if r ' R rθ= 

 

 where Rθ
  is an 

orthonormal rotation matrix specified by the angular 
vector θ , then we have ˆf ( R r ) f ( R u )θ θ⇔ 

 

. (4.3.3) 
Proof: 

 ( ) ( )22
t

N N

i r ui r u

R R

f̂ ( u ) f ( r )e dr f ( r )e drππ −− ⋅= =∫ ∫
 

 

    

. 

 ( )( ) ( )22
ttt

N N

i R r ui r R u

R R

f̂ ( R u ) f ( r )e dr f ( r )e drθθ
ππ

θ

 −  −  = =∫ ∫




 

 



    

. 

 
Let ts ' R rθ= 

 

, the superscript “t” denotes the transport 

operation, we have r R s 'θ= 

 

 ( 1 tR Rθ θ
− =   for the orthonormal 

matrix Rθ
 ) and 

 
( )( )2 t

N

i s ' u

R

f̂ ( R u ) f ( R s ')e ds '
π

θ θ

−
= ∫

 

 

  

. 

Replacing s '  with r , we have 
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 ˆf ( R r ) f ( R u )θ θ⇔ 

 

 (If you are confused, please set N=2 
and go through the process again). 

Note that the rotation property makes a sense only in the 
space with a dimensionality greater than 1. Actually, the 
rotation property is geometrically self-evident, as shown in 
Figure 4.3-2. Intuitively, the Fourier spectrum of an image is a 
linear combination of many waves whose directions and 
amplitudes are specified by the Fourier spectrum of the image. 
Hence, a rotation of the original image implies that all of its 
component waves (as specified by the Fourier spectrum) must 
be rotated by the same angle. Indeed, images are objective, 
and the selection of coordinate systems is subjective. Any 
rotated coordinate system can be used, but we must have the 
same intrinsic features of the images regardless of the rotation 
angle. 

 
Figure 4.3-2. Rotation of an image means the same rotation 
of its Fourier spectrum. 
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SECTION 4.4. REMARKS 

Since a well-behaved function is essentially equivalent to its 
Fourier transform, if we know one of them, we have almost all 
information about the other. Why then would we bother with 
the Fourier transform when it is essentially a redundant copy 
of the original function? If you read the above text carefully, 
you should have had a feeling about the answer. 

Fourier analysis gives us a different perspective of the original 
function. An amazing fact as presented from this section was 
that a discontinuous function such as a rectangular function 
can be viewed as a sum of many continuous simple sinusoidal 
functions. On the other hand, a continuous function can be 
viewed as a sum of many delta functions that are extremely 
discontinuous. In other words, continuity and discontinuity 
can represent each other very well. Often times the complexity 
of a problem depends on perspectives. As an impressive 
example, the convolution theorem reveals that a complicated 
convolution process is a straightforward multiplication in the 
Fourier space. Just like we need to appreciate a sculpture from 
different viewing angles, whenever we have different 
perspectives of an important subject such as a function, our 
understanding of it becomes comprehensive, and our 
capability of analyzing it is enhanced. 

Fourier analysis exemplifies the divide and conquer strategy. 
With the Fourier series or Fourier transform, a function is 
decomposed into sinusoidal building blocks. For a linear 
system, if we know how the system responds to any sinusoid 
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stimulus, we can determine the response of the system to any 
input that is a linear combination of sinusoidal stimuli. This is 
normally easier than a direct solution for the system response 
to a general input. 

Fourier analysis is beautiful. In the Fourier basis, we see self-
similarity among sinusoidal building blocks, which are related 
via translation and scaling operations. A function and its 
transform demonstrate impressive duality and conservation. 
As an example, if a function is well localized in one domain, its 
counterpart will be quite spread out in the other domain, 
governed by the uncertainty principle. 
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Uncertainty Theorem:  

For 
22 1ˆf ( t ) dtdt f ( u ) du

∞ ∞

−∞ −∞
= =∫ ∫ , let 

22 2
t t f ( t ) dtdtσ

∞

−∞
= ∫  and 

2 22 1u
ˆu f ( u ) duσ

∞

−∞
= =∫ , 

we have 
1

4t uσ σ
π

≥ . 

As an exercise, you can try to prove the uncertainty theorem 
if you are curious enough. When will the product t uσ σ  reach 

the minimum? We learned previously in Eq. (4.1.6) that 
2 2t ue eπ π− −⇔ , which is to say that 

2 2

2 22 2

2 2

1 1
2 2

t u

t u

t u

e eσ σ

πσ πσ

− −

⇔  and 
1
2t uσ σ
π

= = . In this 

case, we have 
1

4t uσ σ
π

= .  

As another example of the uncertainty principle, if a function 
is a delta, its Fourier spectrum is a constant, and vice versa. 
Yet another example, you can also try to prove the following 
theorem on the Fourier transform of a function with a finite 
support (i.e., non-zero functional values are defined on a finite 
interval(s)): 
 
Finite Support Theorem: 

If both f ( t ) and f̂ ( u )have finite support, then 0f ( t ) =  
almost everywhere, which is equivalent to say that the 
Fourier transform of a function with a finite support must 
have infinite support. (4.3.4) 
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Fourier analysis is useful in many fields for various reasons. 
The ubiquity of Fourier analysis is a key feature of medical 
imaging. As to be learned later, computed tomography (CT) is 
based on the Fourier slice theorem, magnetic resonance 
imaging (MRI) takes samples in the Fourier space, and so on.   
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CHAPTER 5. SIGNAL PROCESSING 
With either the Fourier series or the Fourier transform, we 
typically deal with a continuous or piecewise continuous 
function. In this chapter, we discuss (1) how to transform a 
continuous function into a discrete function (which is a 
function defined on a discrete set such as all integers), (2) 
under which conditions the information carried by the 
continuous function is fully preserved in its discrete version, 
(3) how to recover the continuous function from the discrete 
counterpart, and (4) what the discrete Fourier transform 
and Fast Fourier Transform are, and why we need them.  

Briefly speaking, we are in the era of big data and 
supercomputing, and computers only take digital data and 
work according to digital logic. Therefore, to be digitally 
processed, an analog signal should be sampled at discrete 
points, and recorded in the binary format. Fourier analysis is 
both the theoretical foundation and a powerful tool for digital 
signal processing. 

SECTION 5.1. SERIES OF DELTA FUNCTIONS  

When we introduced the delta function, we mentioned its 

sampling property: 0 0( t t ) f ( t )dt f ( t )δ
∞

−∞
− =∫ . Evidently, to 

represent f ( t )  we will need to sample it densely enough. 
Since we do not know where in the domain of the function 
needs to be sampled more densely, we should sample it 
uniformly. Mathematically, this sampling process can be 
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modeled as an integral of the product of an analog signal and a 
series of delta functions.  

Precisely, the series of delta functions is defined as  

 
k

s( t ) ( t k )δ
∞

=−∞

= −∑ ,  (5.1.1) 

or in the general case of a sampling step ∆ , 

 
k

s ( t ) ( t k )δ
∞

∆
=−∞

= − ∆∑ .  (5.1.2) 

Integrating the product of a function to be sampled and a 
series of delta functions yields the sampling result: 

 
k

d( t ) f ( t )s ( t )dt f ( k ) ( t k )δ
∞ ∞

∆
=−∞−∞

= = ∆ − ∆∑∫ . (5.1.3) 

Note that the above integral is an inner product between the 
continuous function of interest and the series of delta 
functions. In other words, the outcome of the measurement 
process is a new function d( t ) f ( t ),s ( t )∆= . 
 
To see what such a sampling process means in the Fourier 
domain, we need to know the Fourier transform of s( t )  or 
s ( t )∆ . Actually, we have  

 ( )s( t ) s u⇔ , or generally, ( )1
1

/s ( t ) s u∆ ∆⇔
∆

.  (5.1.4) 
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A simple but imprecise way to show the elegant symmetry 

( )1
1

/s ( t ) s u∆ ∆⇔
∆

 is to perform the following Fourier 

analysis “loosely” without considering the convergence issue 
(in case you are curious about a more rigorous way, please 
read the Section 5.4). 

With a Fourier series expansion, we have 

 
2 ni t

n
n n

s ( t ) ( t n ) c e
π

δ
∞ ∞

∆
∆

=−∞ =−∞

= − ∆ =∑ ∑ , where 

 
2 22 2

2 2

1 1 1n n/ /i t i t

n / /
c s ( t )e dt ( t )e dt .

π π
δ

∆ ∆− −
∆ ∆

∆−∆ −∆
= = =
∆ ∆ ∆∫ ∫

Hence, 

 
2

1
1 1ni t

/
n n

s ( t ) ( t n ) e s ( u )
π

δ
∞ ∞

∆
∆ ∆

=−∞ =−∞

= − ∆ = =
∆ ∆∑ ∑ , 

where in the last step the modulation property Eq. (4.2.4) of 

the Fourier transfer is used. That is, ( )1
1

/s ( t ) s u∆ ∆⇔
∆

. 

The series of delta functions and the convolution theorem are 
instrumental for us to link the four important objects: a 
continuous function, its continuous Fourier 
transform/spectrum, as well as the sampled copies of the 
function and the spectrum.  

Computers can store and process discrete quantized samples 
only, which are known as digital signals, instead of 
continuous data. Hence, we must know how to process 
discrete data from the sampling process Eq. (5.1.3) and how 
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to interpret processed results in the continuous domains. For 
these purposes, digital signal processing has been 
developed as a branch of engineering that is dedicated to 
computerized analysis of digital signals. As a prerequisite, in 
the next two sections we first present the relationship 
between a continuous function and its sampled version and 
under what condition they are equivalent, and then we 
motivate the discrete Fourier transform that transforms 
discrete data into a sampled version of the Fourier transform 
of the continuous function. A big picture is in Figure 5.1-1. 

 
Figure 5.1-1. Steps from a continuous function and its Fourier 
spectrum to their discrete counterparts, aided by the series of 
delta functions and the convolution theorem. 
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SECTION 5.2. SAMPLING THEOREM 

Now, let us reveal an equivalency between a continuous 
function and its discrete/sampled version. As shown in Figure 
5.1-1, we start with a continuous function and its continuous 
Fourier spectrum. First, we use a series of delta functions (in 
red) to sample the continuous function in the t-domain. This 
red series of delta functions has its Fourier spectrum as a 
series of delta functions as well (recall Eq. (5.1.4)). Both the 
red trains of impulses are similar in shape (both look like 
combs with an infinitely long length) with their periods being 
reciprocally related. By the convolution theorem, the 
multiplication for sampling, as defined by Eq. (5.1.3), means 
the convolution of the Fourier spectrum of the continuous 
function with the red series of delta functions in the Fourier 
space. Hence, we have the middle row of Figure 5.1-1, showing 
that the sampled function has a periodically repeated Fourier 
spectra, each of which has the same shape as the original 
spectrum, as long as P is sufficiently large to avoid any 
significant overlap between different copies of the Fourier 
spectrum. Such an overlap is also referred to as aliasing. This 
sampling rate P is called the Nyquist sampling frequency, 
which is no less than twice of the maximum bandwidth W of 
the Fourier spectrum of the original function (the Fourier 

transform must be zero or insignificant at –W or W if 
1

2
P

W
=  

to avoid an aliasing problem!).  

By the finite support theorem, a function and its Fourier 
transform cannot be of a finite support at the same time unless 
both being zero. However, for a well-behaved function/signal 
of a finite length, its Fourier transform will rapidly decay so 
that it can be practically treated as a spectrum of a finite 
support. After the period of the series of delta functions is 
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appropriately selected for sampling in the t-domain, there will 
be no significant overlapping in the Fourier space. In this case, 
we can recover the original function from its sampled version 
as follows: 
 

 ( )1
P P

ˆf ( t ) F ( u ) f ( u )* S ( u )−  = Π  , 

 [ ]1 1
P P

ˆF ( u ) * F f ( u )* S ( t )− −  = Π   , 

 [ ]1 1 1
P P

ˆ ˆF ( u ) * F f ( u ) F S ( u )− − −    = Π     .  

Let us go back to the t-domain, we have 
 

 1
1

/ Pf ( t ) P sinc( Pt )* f ( t ) S ( t )
P

π   =     
 

  

 ( ) ( )
k

ksinc Pt * f t t
P

π δ
∞

=−∞

  = −    
∑ .  

By Eq. (2.2.4), we finally have 

 

k

k kf ( t ) f sinc P t
P P

π
∞

=−∞

    = −    
    

∑ . (5.2.1) 

The above key result can be summarized as 

Nyquist/Shannon Sampling Theorem: 
If the Fourier spectrum of a continuous function f ( t ) is 
non-zero only over (-W, W), f ( t )  can be perfectly 
recovered from its discrete values sampled at the Nyquist 
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sampling rate or a greater rate (no less than 2W) 
according to Eq. (5.2.1). 

Such a continuous function is called band-limited, and can be 
fully represented by its sampled version using Eq. (5.2.1). This 
means that the appropriately sampled continuous function 
does not suffer from loss of information on the original 
continuous function. Hence, digital signal processing on 
discrete data is functionally equivalent to the process in which 
we directly process the corresponding original continuous data. 
This is comforting that under a rather reasonable condition 
(band-limitedness) a sampled function/digital signal contains 
essentially the same content of information as that carried by 
the continuous original.  

Next, we explain how to discretize the Fourier transform, 
which corresponds to the rest part of Figure 5.1-1. To convert 
the continuous Fourier spectrum/spectra into a discrete 
version for use in a computer, we need the second series (in 
green) of delta functions for sampling the continuous periodic 
Fourier transform in Figure 5.1-1. This green series of delta 
functions has the counterpart as a series of delta functions in 
the t-domain. Similarly, both the green trains of delta impulses 
have their periods being reciprocally related. The effect of the 
green trains of delta functions is not only to convert the 
continuous periodic Fourier transform into a discrete periodic 
function but also to make the discrete function sampled before 
in the t-domain becoming periodic. 
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By the sampling theorem, we can recover the continuous 
function from its sampled version according to Eq. (5.2.1), as 
long as the sampling rate is sufficiently high.   

SECTION 5.3. DISCRETE FOURIER TRANSFORM 

Suppose that we have a continuous function/signal f ( t )  
whose support is (-T/2, T/2) or (0, T) with a continuous 

Fourier spectrum f̂ ( t )  that is significant only over (-W, W) 
(in other words, the Fourier spectrum can be ignored outside 
(-W, W)). Due to the first sampling process (with the red trains 
of impulses), we have a periodic continuous spectrum in the 
Fourier space, and we must use the second sampling process 
(with the green trains of impulses) to turn the periodic 
continuous Fourier transform into a periodic discrete function 
in the Fourier domain.  

Similar to what we did in the first sampling process, we now 
need to sample the periodic continuous function in the Fourier 
space  at a sampling rate no less than 1 / T .  According to the 
sampling theorem again, there will be no aliasing from the 
sampling process as long as a sufficiently high sampling rate 
is applied (no less than 1 / T , and the functional values must 
be zero or insignificant at the boundary of the support interval 
(-T/2, T/2) or (0, T) if the sampling rate equals 1 / T  to avoid 
an aliasing in the t-domain). Specifically, the number N of 

samples in the t-domain is 
1N T / PT
P

= = , and 



89 

 
symmetrically the number M of samples in the Fourier domain 
is 

 
1M P / PT N
T

= = = , or 

 
1 1 t u
N PT
= = ∆ ∆  (5.3.1) 

Again, there should be no information loss in each of the two 
sampling processes. That is, the set of discrete samples (N=PT) 
in the t-domain and the set of discrete samples (M=N=PT) in 
the Fourier domain are intrinsically linked together in the 
sense that each of which is equivalent to its original 
continuous counterparts. 

In the t-domain, sampling f ( t )  gives a list of N samples

tf ( t ) f ( t )s ( t )∆=  with 
1t
P

∆ = , which are 0f ( t ) , 1f ( t ) , …, 

1Nf ( t )−  where nt n t= ∆ , 0 1 1n , , ,N= − . Mathematically, 
we have 

 
1

0

N

t n n
n

f ( t ) f ( t )s ( t ) f ( t ) ( t t )δ
−

∆
=

= = −∑ , and 

its Fourier transform 
1 2

0

nN i u
P

n
n

f̂ ( u ) f ( t )e
π− −

=

=∑ , by the 

translation property Eq. (4.2.3) of the Fourier transform.  

On the other hand, in the Fourier domain the sampled f̂ ( u )  

also gives a list of N samples u
ˆ ˆf ( u ) f ( u )s ( u )∆=  with 
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1u
T

∆ = , which are 0f̂ ( u ) , 1f̂ ( u ) , …, 1Nf̂ ( u )−  where 

mu m u= ∆ , 0 1 1m , , ,N= − . In a discrete version of the 

Fourier transform (up to a scaling factor), we have 

 
1 1 22

0 0

mnn mN N ii
NP T

m n m n
n n

ˆf̂ ( u ) f ( t )e f ( u ) f ( t )e
ππ− − −−

= =

≈ = =∑ ∑ .  

Hence, the discrete Fourier transform is now well motivated 
as  

 
21

0

mnN i
N

m n
n

f̂ ( u ) f ( t )e
π− −

=

=∑ ,  (5.3.2) 

which is to compute the continuous Fourier transform at 
discrete points mu m u= ∆ , 0 1 1m , , ,N= − , in the Fourier 

domain from sampled values of the original continuous 
function f ( t )  at discrete points nt n t= ∆ , 0 1 1n , , ,N= − , 

in the t-domain. 

Let us use the integer indices in the bracket to denote 
sampling points in the t- and Fourier domains respectively. 
That is, we define [ ] 00f f ( t )= , [ ] 11f f ( t )= , …, 

[ ] 11 Nf N f ( t )−− = , and similarly [ ] 00ˆ ˆf f ( u )= , 

[ ] 11ˆ ˆf f ( u )= , …, [ ] 11 N
ˆ ˆf N f ( u )−− = . Then, we can neatly 

define the discrete Fourier transform as follows: 

 [ ] [ ]
21

0

mnN i
N

n
f̂ m f n e

π− −

=

=∑ , 0 1 1m , , ,N= − . 
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Once you have these discrete Fourier components [ ]f̂ m  

( 0 1 1m , , ,N= − ), the original functional samples [ ]f n   
( 0 1 1n , , ,N= − ) can be recovered using the inverse 
discrete Fourier transform: 

 [ ] [ ]
21

0

1 mnN i
N

m

ˆf n f m e
N

π− −

=

= ∑ , 0 1 1n , , ,N= − . 

Then, we have the discrete Fourier transform pair: 

 
[ ] [ ]

[ ] [ ]

21

0
21

0

0 1 1

1 0 1 1

mnN i
N

n
mnN i

N

m

f̂ m f n e , m , , ,N ;

ˆf n f m e , n , , ,N .
N

π

π

− −

=

− −

=


= = −



 = = −

∑

∑





  (5.3.3) 

There is the weighting factor 1/N in the inverse discrete 
Fourier transform, which can be understood from the 
numerical computation of the continuous Fourier transform 
and its inversion, in which the sampling steps in the t-domain 
and Fourier space must be used, and whose overall effect is 
summarized as 1/N. To appreciate this point, we mentioned 

that
1 1 1 t u
N P T
= = ∆ ∆ . In other words, an original continuous 

function is approximated as a collection of rectangular 
functions, each of which has a height [ ]f n  and a width t∆ , 
while the continuous Fourier spectrum is viewed as a 
collection of rectangular functions with a height [ ]f̂ m  and a 
width u∆ .  
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The orthonormal basis is used in the discrete Fourier 
transform, because we can show that  

 
1 1

2 2 2

0 0

1 1 1N N
i mk / N i nk / N i ( m n )k / N

k k
e e e

NN N
π π π

− −
−

= =

=∑ ∑ , 

i.e., 

 
1

2 2

0

11 1
0

N
i mk / N i nk / N

k

, m n;
e e

, m n.N N
π π

−

=

=
=  ≠

∑  (5.3.4) 

Remember that when we discussed the Fourier series, we 
already mentioned the orthonormal property. Based on the 
just-formulated orthonormality Eq. (5.3.4), we can directly 
define the discrete Fourier transform and its inversion in 
several equivalent forms, including Eq. (5.3.3) or a totally 
symmetric version: 

 
[ ] [ ]

[ ] [ ]

21

0
21

0

1 0 1 1

1 0 1 1

mnN i
N

n
mnN i

N

m

f̂ m f n e , m , , ,N ;
N

ˆf n f m e , n , , ,N .
N

π

π

− −

=

− −

=


= = −



 = = −

∑

∑





. 

By now, the linkages become very clear among a continuous 
function, its continuous Fourier transform, the sampled 
version of the function, and its Fourier spectrum. The 
definition of the discrete Fourier transform is very similar to 
that of the inverse transform. For either of them, it appears 
that the number of the basic operations (multiplication and 
addition) is on an order of N2, where N is the number of data.  
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Importantly, there are fast algorithms for the discrete Fourier 
transform and its inversion, with the computational 
complexity on an order of N*log(N). The most popular fast 
Fourier transform (FFT) algorithm and inverse FFT (IFFT) 
algorithms were designed by Cooley & Tukey in 1965. In 1969, 
the Fourier transform of a 2048-point signal took over 
13hours using a directly implemented program but using the 
FFT algorithm the same signal processing task only took 2 
seconds (Wikipedia-FFT 2018). We will not explain how FFT 
works here, as it is technically tedious in our context. 

An exemplary utility of FFT is to compute the discrete 
convolution. For two discrete signals f[n] and g[n] each of 
which is of a length N, the convolved signal has a length 2N-1, 
and the computational cost is on an order of N2 for a directly 
implemented convolution program. Alternatively, since FFT is 
much faster, we can quickly (N*log(N)) transfer the two 
signals into the discrete Fourier domain, perform a 
multiplication there (N operations), and convert the product 
back to the signal space using IFFT (N*log(N)).  

Performing a discrete convolution using FFT/IFFT means that 
we have to deal with periodic functions in the t- and Fourier 
domains. The multiplication in the Fourier space is equivalent 
to the convolution of two periodical extended versions 
corresponding to f[n] and g[n] respectively. Hence, what we 
compute is a circular convolution, instead of the 
conventional linear convolution. With a trick called “zero 
padding” which means to increase the length of a signal by 
adding zeros to it, circular and linear convolutions can give the 
same results; see a simple example (MATLAB-
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CircularConvolution 2018) on the MATLAB website.  Another 
example is to use FFT for spectral analysis (MATLAB-
SpectralAnalysis 2018).  The key idea to improve the spectral 
resolution is to use the zero padding technique in the t-

domain. Based on Eq.  (5.3.1), 
1 t u
N
= ∆ ∆ , by increasing N 

with zero padding , for a given t∆  we can effectively reduce 
u∆ .The smaller u∆ becomes, the better the spectral 

resolution will be in the Fourier space, which means that we 
can estimate the Fourier components of a signal more 
accurately. If you feel difficult to understand this paragraph, 
please do play with the two cited MATLAB examples. 

SECTION 5.4. REMARKS 

We have learned two fundamental ways to 
decompose/represent a function/signal. First, when we 
introduced the convolution, we learned that a function can be 
a convolution of the function itself and a delta function. This is 
to say that the original function can be viewed as a linear 
combination of many appropriately shifted and scaled delta 
functions. Then, with Fourier analysis, a function, either 
continuous or discrete, can be viewed as a sum of various 
Fourier components. By Eqs. (4.1.7) and (4.1.8) respectively, 
a delta function in the t-domain and a constant in the Fourier 
domain form a Fourier transform pair, so do a constant in the 
t-domain and a delta function in the Fourier domain. 

An interesting and important extension of Fourier analysis is 
so-called wavelet analysis. A generic wavelet is locally 
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concentrated, which is much “shorter” than a sinusoidal 
function. The key mechanism for wavelet analysis is that the 
basis functions are formed from the generic or “mother” 
waveform through scaling its support and translation in the t-
domain, without altering the shape of the mother waveform. 
Compressed wavelet shapes in the t-domain correspond to 
enhanced high frequency contents in the Fourier space, more 
efficiently representing signals through linear combination in 
many practical applications such as signal/image 
compression. Two mother wavelets are in Figure 5.4-1. 

  
Figure 5.4-1. Two mother wavelets: (Left) The Meyer wavelet, 
infinitely differentiable, and (Right) the Mexican hat, which is 
the negative normalized second derivative of a Gaussian 
function. 

 
A major task of signal processing is to reconstruct a signal 
from discrete measurements. In an unconstrained space, this 
is an impossible mission since the signal could take any value 
when it is not measured between two adjacent sampling 
points. However, with a reasonable signal model such as the 
band-limited signal model, it becomes feasible to recover the 
signal faithfully from its sampled version, as well 
demonstrated by our derivation of the Nyquist sampling 
theorem. 
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Just like the representation of a signal is not unique (for 
example, it can be expressed as a series of translated and 
weighted delta functions or a sum of sinusoidal functions), the 
signal model is not unique. Different from the band-limited 
signal model, the signal sparsity model has attracted a major 
attention since this millennium. As a result, a signal may be 
reconstructed from a number of samples far less than what is 
requested by the Nyquist sampling theorem. This area of 
research is known as compressed sensing or compressive 
sensing. Among many potential signals that fit into sampled 
data, a recovered signal is requested to be sparse in a good 
sense; for example, its total variation (TV) (Han, Yu et al. 
2009, Yu and Wang 2009, Yu, Yang et al. 2009). In a 1D case, 

TV can be defined as [ ]
1

1
1

N

n
TV f [ n] f n

−

=

= − −∑ . The 

minimization of TV implies that the recovered signal tends to 
be piecewise constant. While TV encourages sparsity in terms 
of edginess, there are other sparsifying transforms such as 
high-order TV measures (Yang, Yu et al. 2010) and dictionary 
representation (Xu, Yu et al. 2012). 

Both the band-limited assumption and the sparsity constraint 
are quite mathematical. A superior way to represent data 
features is to have a big dataset of relevant samples. In a 
fundamental sense, such big data should be our best signal 
model! For example, the ImageNet project is a large image 
database to test visual object recognition algorithms 
(ImageNet 2018). ImageNet contains multi-millions of URLs 
pointing to annotated images. A signal/image recovery 
algorithm can be trained on these images for the best 
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performance, and this data-driven approach is characteristic 
of the rapidly-developing field known as machine learning. 

Finally, let me comment on an open question related to Eq. 

(5.1.4), i.e., why ( )s( t ) s u⇔  or ( )1
1

/s ( t ) s u∆ ∆⇔
∆

? This 

question arises from the need to  perform Fourier analysis on 
d( t ) f ( t ),s ( t )∆= . Hence, we require a reasonable d( t )  

so that its Fourier analysis will make sense. For example, we 

do not want to have 
k

d( t ) ( t k )δ
∞

=−∞

= − ∆∑ , which is the case 

when 1f ( t ) = ; otherwise, the Fourier integral will diverge.  

Such a problem can be avoided if we require that f ( t )  is in 
the Schwartz space. The name might sound too fancy but we 
can simply consider it as a space consisting of all “good” 
functions that will make the Fourier transform of d( t )
converge.  More rigorously speaking, the Schwartz space 
consists of all smooth functions whose derivatives decay 

faster than any power; i.e., 0 0f ( t )t as t
t

φ
α

β

∂
→ →

∂
 for 

any non-negative integers α and β. Basically, the citizenship of 
a function in the Schwartz space means that the function 
allows Fourier analysis. Although s ( t )∆  as a generalized 

function (a series of generalized functions) is a strange animal 
not living in the Schwartz space, d( t ) f ( t ),s ( t )∆=  can be 

analyzed using the Fourier transform if f ( t ) is in the 
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Schwartz space, thanks to the extremely nice character of 
f ( t ) . Since practical functions/signals are of finite extent and 

can be well approximated with smooth curves if needed, they 
are in the Schwartz space as a good playground for our 
engineers.  

First, let us consider the Fourier transform of s( t ) , which is 
tricky since the Fourier transform of s( t )  does not converge: 

2i ku

k
ŝ( u ) e π

∞
−

=−∞

= ∑ . However, for our measurement purpose, we 

only need the Fourier transform of the inner product 
d( t ) f ( t ),s( t )= . As long as the inner project and its Fourier 

transform make sense, we can do our job without any problem. 
That is to say, we should interpret the Fourier transform in the 
sense of such inner products. It is in this sense that it can be 
rigorously proven that Eq. (5.1.4) is valid.  The rough ideas are 
as follows.  

Geometrically, if a function is in the Schwartz space, its 
Fourier transform is also in that space, since the Fourier 
transform is to represent the original function in another 
orthonormal coordinate system and does not change its 

intrinsic properties. Thus, both ŝ, f  and ˆs, f  exist in the 

sense of the unconjugated inner product Eq. (3.3.6) (with 
abuse of notation, please read (Osgood 2018) for more 
rigorous treatment, which is an outstanding book but it is too 
long for our purpose): 
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ˆŝ, f s, f= . (5.4.1) 

Proof: 

 2i uvŝ, f f ( u ) s( v )e dv duπ
∞

∞ −

−∞
−∞

 
=  

 
∫ ∫  

 2i uv ˆs( v ) f ( u )e du dv s, fπ
∞

∞ −

−∞
−∞

 
= = 

 
∫ ∫ . 

Poisson Summation Formula: If we let f ( t )  be in the 
Schwartz space, then 
 

 
l k

f̂ ( l ) f ( k )
∞ ∞

=−∞ =−∞

=∑ ∑ . (5.4.2) 

 
Proof: 
First, we extend f ( t )  into a periodic function 

 
k

F( t ) f ( t )* s( t ) f ( t k ).
∞

=−∞

= = −∑  

Next, we expand it into the Fourier series 

 2i lt
l

l
F( t ) c e π

∞

=−∞

= ∑   

Where 

( )
1 1

22

0

k
i l t ki lt

l
k k k

c e f ( t k )dt e f ( t )dtππ
− +∞ ∞

− +−

=−∞ =−∞ −

= − =∑ ∑∫ ∫ . 

Since 2 1i lke π− = , we have 
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1

2 2
k

i lt i lt
l

k k

ˆc e f ( t )dt e f ( t )dt f ( l )π π
− + ∞∞

− −

=−∞ − −∞

= = =∑ ∫ ∫ . 

If we evaluate 0F( )  in both the originally extended form and 
the Fourier series, then the Poisson summation formula is 
immediately obtained. 
 
In the sense of the un-conjugated inner product in the 
Schwartz space, we can find the Fourier transform of s( t )  as 
follows. Without loss of generality, let us assume that f ( t )  is 
a real-valued function. By Eq. (5.4.1), 

l

ˆ ˆŝ, f s, f f ( l )
∞

=−∞

= = ∑ . By the Poisson summation 

formula (5.4.2), we have 

 
l k k

ˆŝ, f f ( l ) f ( k ) ( t k ), f ( k )δ
∞ ∞ ∞

=−∞ =−∞ =−∞

= = = −∑ ∑ ∑  

 
k

( t k ), f ( k ) s, fδ
∞

=−∞

= − =∑ . 

Therefore, ŝ, f s, f=  or ŝ s=  as far as our intended 
measurement process is concerned. That is, ŝ( u ) s( u )=  or 

( )s( t ) s u⇔ , and it can be similarly shown that

( )1
1

/ŝ ( u ) s u∆ ∆=
∆

 or ( )1
1

/s ( t ) s u∆ ∆⇔
∆

. In other words, a 

series of delta functions is still a train of impulses in the 
reciprocal space. The longer the period in one space, the 
shorter the period in the other space.  

Very interestingly, we saw that 
2 2t ue eπ π− −⇔ , and now we 

have ŝ s= . It was mentioned that in the context of the Fourier 
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transform pair, the wider a function in one domain, the 
narrower its counterpart in the other domain. For a constant 
function in one domain, we have a delta function in the other 
domain. As the delta function is more and more spread out, 
the constant function becomes more and more localized. The 
Gaussian function is the sweet balanced point so we have 

2 2t ue eπ π− −⇔ . You might have been convinced that the 
Gaussian function is the only symmetric solution, but now we 
have ŝ s⇔ , which emerged from a different perspective. 
Because s  is both widely spread out and highly localized, by 
the duality of the Fourier transform so should ŝ , providing 
another balancing point ŝ s⇔ . Do you have any additional 
solutions of this type?  



102 

 

CHAPTER 6. NETWORK 
A network is an important type of complex systems, and consists 
of many interconnected components, modules, and sub-systems. 
Due to the interconnections in the network, it can be modeled as a 
composition function with multiple inputs, outputs, and couplings. 
Typical cases of networks are electrical networks, biological 
neural networks, and artificial neural networks that recently 
attract a major attention. In this chapter, we will discuss basic 
concepts and techniques solving for unknowns in electrical 
networks, also referred to as circuit analysis. Then, we will 
introduce biological and artificial neural networks, touching on 
the emerging field of machine learning as it pertains to medical 
imaging. 

SECTION 6.1. ELECTRICAL NETWORK 

An electrical network, or a circuit, consists of electrical 
components such as power sources, resistors, capacitors, 
inductors, and operational amplifiers that are linked to 
different nodes and form various loops. Each electrical 
component is described by a specific relationship between the 
voltage across the component and the current through it. In 
every circuit, there should be one or more voltage and/or 
current sources to provide driving force. Circuit analysis is to 
determine the voltage and current for each electrical 
component. 

These systems can be easy or very hard to analyze depending on 
the complexity of the circuit in question. First, let us introduce 
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Ohm’s law for a resistor, and then generalize it for a capacitor and 
an inductor. Ohm’s law in its generalized form can be directly 
used to find the voltage across an electrical component from the 
current through it, or vice versa. 

You may recall that Ohm’s law is the voltage-current relationship 
for a resistor, 

 V RI=   (6.1.1) 

where V denotes the voltage which is a driving force to generate a 
current, I is the current which is the flow of electrons (I), and R is 
the resistance reflecting the capability of a resistor to resist or 
restrict the current. The voltage V=RI can also be interpreted as 
the voltage the resistor of resistance R takes when the current is I. 
Assuming a constant voltage drop across a resistor, increasing 
resistance will reduce the current through the resistor. 

However, we cannot build many interesting circuits without the 
use of other components, such as capacitors and inductors. A 
capacitor consists of parallel metallic plates where charges can 
be stored. It works by having the plates accumulate opposite 
charges due to a driving voltage applied across the capacitor. 
These charges will act against the driving voltage and eventually 
counteract the voltage to the point that no more current flows. 
Note that capacitors have different capabilities to store charges or 
electrical energy based upon their geometry and dielectric 
material between the plates of the capacitor. This energy-storing 
capability is known as capacitance. The voltage, the account of 
stored charges, and capacitance are related by the equation 
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 ( ) ( )Q t CV t= , (6.1.2)  

where Q is the amount of charges (positive or negative), C is the 
capacitance of the capacitor, and V is the driving voltage across 
the capacity. Since the current is the first derivative of the amount 
of charges with respect to time, we have  

 ( ) dQ dVI t C
dt dt

 = =  
 

, (6.1.3) 

where I is the current through the capacitor, and dV
dt

 is the change 

in the voltage over time. Alternatively, we have the following 
relationship: 

 ( ) ( ) ( )
0

0
1 t

t

V t  I t  dt V t
C

= +∫ , (6.1.4) 

where ( )0V t  is the initial voltage. 

As a counterpart to a capacitor characterized by dVI C
dt

 =  
 

, we 

have another component known as an inductor characterized by 

 ( ) dIV t L
dt

 =  
 

.  (6.1.5) 

An inductor is a coiled wire structure that generates an 
electromagnetic field when a current I flows through the coil, 
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with the voltage across the inductor being proportional to the 
rate of change of the current. The proportional coefficient, L, 
is known as inductance. The inductance depends on not only 
the geometry of the current path but also the magnetic 
permeability of nearby materials.  In other words, the 
inductor opposes any change in the current, and the voltage 
must be applied to increase the current. The differential 
relationship between the voltage and current for an inductor 
can be also put in the integral form:  

  ( ) ( )
0

0
1 t

t

I  V t  dt I t
L

= +∫ ,  (6.1.6) 

where ( )0I t  is the initial current. Similar to Eq. (6.1.2) in the 

case of a capacitor, in the case of an inductor we have 

 ( ) ( )t LI tΦ = , (6.1.7)  

where Φ is the magnetic flux which reflects the magnetic 
energy stored in the coil. 

As we have discussed, resistors, capacitors and inductors can be 
used to make up circuits. A circuit made up of power sources and 
only these three types of components is referred to as an RCL 
circuit. Since each of these components is linear (you can verify), 
an RCL network is also linear.  

Recall that we mentioned earlier that the convolution theorem 
is only valid for Fourier transform. This means that a stable 
response of an RCL circuit to a sinusoidal signal remains 
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sinusoidal at the same frequency. That is, in the steady state, a 
resistor, a capacitor, an inductor, or an RCL network will not 
change the waveform of a sinusoidal input/excitation, and the 
output/response will be a sinusoidal function at the same 
frequency with a scaled amplitude and a changed phase. Thus, 
once we have the amplitude and the phase of the response 
wave, we will know the wave exactly. 

Mathematically, a sinusoidal wave F( t ) Acos( t )ω φ= +  can 

be put in a complex form i( t )F( t ) Ae ω φ− += , and 

( )F( t ) Re F( t ) .=   For a stable response of an RCL circuit 

driven by a power source at a given frequency, the voltage and 
current for any component of the circuit will vary at the same 
frequency, and only A and φ  matter. Hence, we can simplify 
the complex notation into the phasor notation F A φ= ∠ . 

With this in mind, let us reanalyze the voltage-current 
relationship for a capacitor. For a voltage source 

2V( t ) Acos( ft) Acos( t)π ω= = , we have  

 dV( t )I(t) C C Asin( t) C Asin( t )
dt

ω ω ω ω π= = − = + . 

That is, 

 
2 2

I(t) C Acos( t ) C Acos( t )π πω ω π ω ω= + − = + . In the 

complex notation, i( t )V( t ) Ae ω−= , 2
i t

I ( t ) C Ae
πω

ω
 − + 
 =

, 

which motivate the definition of the capacitance  
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 1
C

VZ
I iCω

= =




  (6.1.8) 

so that 

2C

V( t )I( t ) Re C Acos( t )
Z

πω ω
 

= = + 
 



. In the phasor form (a 

simplest notation), we have 0V A °= ∠  and 90I C Aω °= ∠ . 

In the case of an inductor, the derivation is very similar.  For a 
current source 2I( t ) B cos( ft) B cos( t)π ω= = , we have 

 dI( t )V(t) L L B sin( t) L B sin( t )
dt

ω ω ω ω π= = − = + , or 

 
2 2

V(t) L B cos( t ) L B cos( t )π πω ω π ω ω= + − = + . 

In the complex notation, i( t )I ( t ) Be ω−= , 2
i t

V( t ) L Be
πω

ω
 − + 
 =

, and then we define the inductance  

 
L

VZ iL
I

ω= =




  (6.1.9) 

so that 

( ) 2LV( t ) Re Z I( t ) L B cos( t )πω ω= = + . In the phasor form, 

we have 0I B °= ∠  and 90V L Bω °= ∠ . While the current is 
phased 90° ahead of the voltage in the case of a capacitor, the 
current is phased -90° behind the voltage in the case of an 
inductor.  



108 

 
Now, we are ready to extend Ohm’s law, V IR= , which is the 
case where there is neither phase advance nor delay, to the 
general case with R being replaced with Z, which is called 
impedance. Generally speaking, impedance means resistance 
in a generalized form that can be applied to both direct 
current (DC) and alternating current (AC) circuits assuming 
that the involved voltage and current are constant or 
sinusoidal. Specifically, Z can be computed in a way 
determined by the type of components: For a resistor RZ R,=

for a capacitor 1
CZ

j Cω
= , and for an inductor LZ j Lω= .  

Since impedance links the voltage across a component and the 
current through the component in the same way as resistance 
does in Ohm’s law V IR= , we can generalize Ohm’s law as  

 V ZI=   (6.1.10) 

where Z is the impedances.  

In a general case, impedance is a complex number reflecting 
the resisting effect of a single or multiple components. Indeed, 
components can be linked together in series or in parallel. The 
equivalent impedance Ze can be computed in each case by 
treating impedance components Z1 and Z2 in series or parallel 
as a whole block with an overall voltage across the block and 
a total current through the block. The resultant formulas for 
series and parallel connections are respectively: 

 1 2eZ Z Z= +  and  (6.1.11) 
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1 2

1 1 1

eZ Z Z
= + , (6.1.12) 

as shown in Figure 6.1-1. As your exercise, please prove Eqs. 
(6.1.11) and (6.1.12). 

 

Figure 6.1-1: Equivalent impedance of two impedance 
components in series and parallel connections respectively. 

When linking more components including voltage and current 
sources into a more complicated network, it becomes more 
difficult to analyze the voltage and current for each 
component. Now, let us introduce a few concepts that are 
essential to analyze a circuit systematically. The first is a node, 
which is the point where circuit elements are connected. The 
second is called a branch which is the path between two 
nodes. The last is a loop which is a closed path through 
involved branches only once. To practice, please count how 
many nodes, branches, and loops in Figure 6.1-2. Using these 
concepts, we can explain two Kirchhoff’s laws to setup a 
system of linear equations in terms of voltage across, current 
through, and impedance of any component. 
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Figure 6.1-2. Three nodes (blue) and three loops (red) in the 
circuit. 

The first is Kirchhoff’s current law (KCL), which states that the 
sum of the currents into and out of a node equals zero. In other 
words, charges can be moved around but they cannot be created 
or destroyed. KCL means that the total amount of charges must be 
conserved, much like mass conservation. The second is 
Kirchhoff’s voltage law (KVL), which states that the sum of the 
potential differences around a loop equals zero. In other words, 
the total voltage drop around the loop should equal the total 
voltage due to the sources, just like that the total change in 
potential energy must be zero after you return to your destination 
from climbing a hill. KCL and KVL are illustrated in Figure 6.1-
3. 
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Figure 6.1-3. KCL (Left) and KVL (Right) reflect conservation 
of charge and energy respectively. 

The use of KCL and KVL as needed will guarantee that an 
electrical network can be solved for a unique solution. This 
statement can be appreciated heuristically as follows. Suppose 
that a basic network can be solved with a unique solution (indeed, 
for a single branch we can just use Eq. (6.1.10), V=ZI, to find the 
solution). Then, as shown in Figure 6.1-4, we can do three kinds 
of enhancement to the basic network: (1) adding a loop without 
adding any node (the red line forms a new loop), (2) adding a node 
without increasing the number of loops (the green node is new), 
and (3) adding a loop and a node (the blue node is new, and the 
blue line forms a new independent loop). In the first case, applying 
KVL to the new loop gives us an additional independent equation 
to solve for the voltage across the red branch. In the second case, 
the potential differences form the new node to each of the adjacent 
nodes can be easily determined since by assumption we can find 
the potential difference between the two adjacent nodes. In the 
third case, we can apply KCL and KVL to the new node and the 
new loop to solve for the voltage across the blue branch and the 
current division at the blue node along the pre-existing branch. 
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Figure 6.1-4. Basic network (Black) and enhanced one 
(Colored compoents) by adding a loop without adding 
any node (the red line), adding a node without 
increasing the number of loops (the green node), and 
adding a node and a loop (the blue node and line). 
 

Using KCL and KVL at convenience, we should be able to set 
up a system of sufficiently many independent linear equations 
to solve for unknown voltage and current variables. For 
example, Figure 6.1-5 shows how linear equations are listed 
for a circuit. 

 

Figure 6.1-5. Three independent linear equations obtained 
using KCL and KVL at convenience. 

Although the above circuit only uses resistors and batteries, it 
should be noted that KCL and KVL can be applied to AC circuits 
as well, since the charge conservation and the energy conservation 
hold regardless the type of circuits, DC or AC. For the steady state 
response of an RCL circuit, the system of linear equations will be 
in the complex space, and can be similarly solved. 

SECTION 6.2. EXEMPLARY CIRCUITS 
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Using resistors, capacitors and inductors, we can create useful 
devices. An analog low-pass filter is a good example, which 
works by filtering out higher frequency signals using a 
combination of a resistor and either a capacitor or an inductor, 
as shown in Figure 6.2-1. Note that one could similarly create 
other types of filters, such as a high-pass filter that 
suppresses low frequency signals, and a band-pass filter that 
makes a certain frequency range more transparent to an input 
signal. 

 

Figure 6.2-1. Low-pass filters using a combination of a 
resistor and either a capacitor (Left) or an inductor (Right). 

 
Taking the RC circuit in Figure 6.2-1 as an example, we have 

 1
i eV ( t ) Z I ( t ) ( R )I ( t )

i Cω
= = +    and 

 1
o CV ( t ) Z I ( t ) I ( t )

i Cω
= =   . 

Then, the transfer function is defined as 

 

1
1 1

1 1 1
o

i

V ( t ) i CT( )
V ( t ) i RCR i

ˆi C

ωω ωω
ω ω

= = = =
++ +





, 
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where 1ˆ
RC

ω =  is the bandwidth of the low-pass filter. 

An input signal can be decomposed using the Fourier 
transform into many sinusoidal components at different 
frequencies. Because the transfer function depends on the 
frequency of a sinusoidal stimulation, the output response will 
be quite close to the sinusoidal input when its frequency is 
small relative to the bandwidth, and the output response will 
be nearly zero when its frequency is much greater than the 
bandwidth. 

As another type of examples, let us discuss circuits for weak 
signal detection. First, let us look at a voltage divider and a 
Wheatstone bridge. A resistive voltage divider is a simple 
circuit comprised of two resistors in series with a connection 
coming out between the two resistors. This setup can be 
manipulated so that a certain fraction of an input voltage is 
transferred through the circuit to be picked up at the next 
stage. This amount of voltage to be found is as follows: 

 2

1 2
Out In

RV V .
R R

=
+

 (6.2.1) 

Any small perturbation to either the input voltage or the 
resistor will lead to a change of the output voltage. Typically, 
such a change is the signal to be detected, which deviates from 
the nominal output voltage. Since the signal is small, we need 
an amplifier (to be discussed below) to increase the signal by 
a large factor. This will magnify the nominal output 
background as well, which could yield a very high voltage and 



115 

 
become impractical. For signal magnification, it is highly 
desirable to design a circuit with a zero output unless there is 
a signal. This is the purpose of the Wheatstone bridge, which 
consists of two voltage dividers as shown in Figure 6.2-2. 
Under the balancing condition for the Wheatstone bridge: 

 31

2 x

RR ,
R R

=  (6.2.2) 

the voltage between the midpoints of the two voltage dividers 
will be zero. If there is any change in one of the resistors 
(called the reference resistor or a sensor) the measured 
voltage will be a non-zero signal. 

 

 

Figure 6.2-2: Single voltage divider (Left) and the 
Wheatstone bridge (Right) consisting of two voltage 
dividers for weak signal detection.  

 
While a resistor is our sensor in Figure 6.2-2, a capacitor or an 
inductor can be used for sensing as well. For example, with a 
capacitive displacement sensor, any relative displacement of the 
plates in the capacitor will change the capacitance. Hence, the 
displacement can be record as the resultant voltage change (say, 
in the phasor form). 
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Because weak signal detection is fundamentally important to 
medical imaging, let us have a deep look at the voltage divider 
in Figure 6.2-2. From the input perspective, the sensor should 
have a very large resistance or impedance so that the voltage 
signal can be effectively captured by the sensor, instead of 
being wasted on non-sensing components. However, from the 
output perspective, the sensor should have a very small 
resistance or impedance so that the voltage signal can be 
effectively relayed to the next stage, instead of being kept on 
the sensor. Again, we want to magnify the voltage signal by a 
large factor either across the sensor in the voltage divider or 
between the midpoints of the two voltage dividers in the 
Wheatstone bridge. These requirements suggest a need for a 
dreamed component that has a large input impedance, a small 
output impedance, and a huge magnification factor. This dream 
came to true when the operational amplifier was invented! 

An operational amplifier is a nonlinear component that has 
large input impedance and small output impedance, and 
serves to increase a weak voltage to a very high level, as 
summarized in Figure 6.2-3. Such an amplifier consists of 
many transistors driven by a power source. Each transistor is 
a fusion of two diodes. A diode is a nonlinear semiconductor 
component through which a current flow easily along one 
direction and much harder in the other direction. Despite the 
physical complexity of an operational amplifier, its ideal and 
typical characteristics can be summarized in Table 6.2-1, and 
represented in a simple diagram in Figure 6.2-3. 

Parameter Ideal Value Typical Value 
Open-loop Gain ∞ 105-109 
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Common Mode Gain 0 10-5 

Bandwidth ∞ 1-20 MHz 
Input Impedance ∞ 106-1012 Ω 

Output Impedance 0 100-1,000 Ω 
Table 6.2-1. Key features of an operational amplifier. 
 

             

Figure 6.2-3. Symbol and rendered views of an operational 
amplifier, which is often packed in an integrated circuit chip.  

When it comes to working with operational amplifiers, it is 
important to note two rules. First, the two input terminals are at 
the same voltage (otherwise, the output voltage would be huge). 
Second, no current flows into either of the two input terminals 
(otherwise, the two input terminals would not be at the same 
voltage). Using these two rules, one will be able to analyze circuits 
involving an operation amplifier. To practice, please analyze the 
first circuit module (and more if you like) in Figure 6.2-4 to see if 
you can find the relationship between input and output voltages. 
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Figure 6.2-4. Typical circuit modules constructed around an 
operational amplifier. 

To make a digital computer, nonlinear components must be 
used to form logical gates where the output voltage will be 
high (“1”) or low (“0”) depending on wherever certain logical 
requirements are met at the input ports (for example, an 
“AND” gate will output a high voltage if and only if all input 
variables are at a high voltage. Arithmetic and symbolic 
operations can be implemented as logic operations, and that 
is why a digital computer is so powerful. 

SECTION 6.3. NEURAL NETWORK 

Networks can come in many different forms other than the 
electrical networks we have discussed. In particular, there 
exist fascinating networks within the realm of biology, namely 
biological neural networks. These networks are also kind of 
electrical networks because signals are generated and 
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transmitted as electrical pulses. The nervous systems of 
organisms are primarily made up of biological neurons. 
These neurons themselves can be very complex, and the exact 
mechanisms by which they function are beyond the scope of 
this book. However, we can simplify the neuron as shown in 
Figure 6.3-1. Note that inputs to a neuron are not treated in 
the same way; i.e., weighting factors associated with the 
stimuli are generally different, with certain pathways 
encouraging stimulation and the others suppressing it. After 
the weight processes, all the input stimuli are accumulated 
together inside the neuron. If the overall stimulation is too 
weak, the neuron will ignore it. However, if the total effect is 
strong relative to a certain threshold, an electrical impulse 
will be generated as a non-zero output of the neuron, and 
transmitted along neural fiber to other neurons. While each 
neuron works based upon fairly standard rules, numerous neurons 
are interconnected to form a biological neural network from which 
intelligence emerges!  

Figure 6.3-1. Biological neuron with multiple inputs via 
dendrites and a single output in response to an overall effect of 
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all weighted stimuli, whose output will be sent along the axon 
to other neurons if the response is over a threshold. 

Inspired by this amazing insight, artificial neurons and artificial 
neural networks were proposed decades ago. Over past several 
years, this biomimetic approach, as the mainstream of machine 
learning and artificial intelligence, has achieved astonishing 
achievements! This is the very technology behind auto-driving 
cars, natural language understanding and translation systems, and 
game-playing programs such as Alpha-Go, as a few examples. 

The main idea of an artificial neural network is to map the inner 
working of a biological neuron into a mathematical operator and 
interconnect such operators into a system for various 
computational tasks. An artificial neuron is a counterpart of a 
biological neuron. As an operator, an artificial neuron works in 
two steps: (1) compute a linear combination by which all inputs 
are individually weighted and then summed into a single number; 
and (2) perform a nonlinear activation in which the inner product 
is fed into a nonlinear function to produce an output. The artificial 
neuron is illustrated in Figure 6.3-2. If we compare Figures 6.3-1 
and 6.3-2, we can see the correspondences betw

een the biological and artificial neuron components. 
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Figure 6.3-2. Artificial neuron as a counterpart of a biological 
neuron. 
 

To describe an artificial neuron mathematically, the inner 
product part is expressed as the following linear function of 
the input variables { }ix=x , 0 1 2ix , i , , ,...,n= :  

  ( )
0

n

i i
i

f w x
=

=∑x ,  (6.3.1) 

where { }iw=w , 0 1 2i , , ,...,n= , 0w b=  is an offset, and 

0 1x = . Then, ( )f x  will be nonlinearly processed, such as by a 

sigmoid function  

 1
1

( x )
exp( x )

σ
β

=
+ −

, (6.3.2) 

where β is a constant. 

Clearly, the single neuron can separate two sets of inputs that 
are linearly separable. In contrast, for linearly inseparable 
tasks, a single neuron is subject to classification errors. For 
example, a single neuron is incapable of simulating the XOR 
gate which is a binary function defined as follows:  

 
0
1

, x y;
f ( x, y )

, x y.
=

=  ≠
 (6.3.3) 
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With artificial neurons as building blocks, an artificial neural 
network can be built of various architectures. The 
feedforward network uses layers of artificial neurons and 
passes data from low to high levels to extract from local to 
global features. In this setting, each neuron in the previous 
layer will provide its output as an input to the next layer, and 
such a network is potentially very powerful for signal 
processing, image reconstruction and analysis. 

The potential of an artificial neural network can be maximized 
when its architecture is appropriate, its activation functions 
are effective, and its parameters are optimized. Currently, 
there are neither rigorous theory nor surely-working 
guidelines in specifying a network topology and an activation 
function. Fortunately, this field is extremely hot, with new 
results being published constantly. Based on collective 
wisdom and experience, we do have a good sense what kinds 
of network architectures and activation functions should be 
used for trial. 

Given a network architecture and a nonlinear activation 
mechanism, the rest of the task is to optimize all the 
parameters including both weights and offsets. Starting from 
a random guess, we can keep improving the parameters 
according to a loss function that measures the discrepancy 
between the desirable output and the current output of the 
network. This optimization problem can be addressed using 
a gradient descent search method, or an alternative. 

Gradient descent search is a first-order optimization 
algorithm to find the minimum of an objective function 
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iteratively along the gradient direction which gives the 
greatest improvement when the current parametric setting is 
improved by a small amount. In other words, you need to take 
a small step each time proportional to the negative of the 
gradient (or of the approximate gradient) of the function from 
the currently guessed parameters. Mathematically, we have 

 
( )

1
k

k k

E
: η+

∂
= −

∂
w

w w
w

  (6.3.4) 

where E is the loss function between the output h(x) of the 
network given the current parameters and the ideal output y: 

 ( ) ( )( )2

0

n

i i
i

E h x y
=

= −∑ w , (6.3.5) 

and η is the learning rate which is a scaling factor typically 
between zero and one and can be adaptively changed. In the 
optimization process, the weight values will naturally follow the 
gradient direction which is spatially varying until the derivative 
term vanishes, indicating that the parameters are very close to an 
optimal solution.  

For a single neuron, we compute the gradient vector as follows: 

 
( ) ( )( )2

0
j j

i i

N

j
h x

w
y

E
w =

∂ ∂
= −∑ 

w
  (6.3.6) 
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Along the gradient direction, we can optimize the neuron 
gradually to produce the desired output as closely as possible.  

Take this further, multi-layer neural networks can be similarly 
optimized. However, the exact steps are not shown here and 
can be found online if you are curious. Indeed, the basic idea 
remains the same as that for the single neuron optimization 
but the chain rule is needed to derive a dedicated algorithm 
known as back propagation. 

SECTION 6.4. REMARKS 

The artificial neuron is a mathematical function, and can be 
built as an electrical network. Specifically, input variables can 
be voltage or current values, and weighting parameters can be 
implemented with resistors connecting to a common node. 
Then, the nonlinear activation of the total signal at the node 
can be implemented using a nonlinear component as simple 
as a diode. From the electrical perspective, it is very natural to 
consider complex-valued networks, in which inputs and 
weights are complex numbers, and so can be the output. For 
inputs, we take AC signals, and for weights we use impedance 
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components instead of resistors alone. Complex-valued 
networks remain an active area of research. 

A scientific philological view is that the advancement of science 
is through the emergence of fundamental methodologies referred 
to as paradigms. Thousands of years ago, the scientific paradigm 
was empirical only, meaning that scientists simply described 
natural phenomena, such as observations of the night sky. Then, 
the theoretical paradigm came, thanks to Euclid, Newton, 
Einstein, and others. A few decades ago, we progressed to the 
computational era, and we began simulating complex processes. 
Today, recognized as the fourth paradigm, we heavily rely on 
machine learning and big data so that new knowledge can be 
automatically found from big data. The point is that when 
machines are able to learn and do, many jobs of ours can be done 
by machines! 

In 2017, I participated a public debate in support of the statement 
that “machine learning will transform radiology significantly 
within the next 5 years”, which was published in Medical Physics 
as a “Point/Counterpoint” article (Wang, Kalra et al. 2017), which 
was ranked as Top 10 in terms of the number of downloads for the 
journal in 2017. I believe that machine learning and artificial 
intelligence has a transformative potential in the medical physics 
field, valid for both medical imaging and treatment planning. You 
may just read that debate article. 
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CHAPTER 7. IMAGE QUALITY 
This chapter is the last piece of the foundation (necessary 
knowledge on mathematical/signal analysis), based on which 
we are well prepared to learn major tomographic modalities 
and their combinations. Since any imaging modality is 
intended to produce images that are supposed to be sharp, 
fine, and informative, image quality assessment (IQA) is an 
important aspect of medical imaging. Defining quality 
objectively is not straightforward, since quality in general is a 
context-sensitive concept. That being said, we have certain 
ways of defining image quality appropriately. While some 
ways are applicable to all types of images, others are more 
system-specific or task-specific. These will be explained in the 
following sections. 

SECTION 7.1. GENERAL MEASURES 

The simplest way to access image quality is to compute a 
distance, such as the Euclidian distance, between a medical 
image and the ground truth. The common measure is the 
mean squared error (MSE) between an image in question x  
and a gold-standard reference y and defined as 

 ( ) ( )21MSE ,  
n

i i
i

y
n

x= −∑x y   (7.1.1) 

where i  is the index through n  pixels. MSE measures how 
different an image is from the reference. A lower MSE is 
expected to indicate a better image quality. It should be noted 
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that this measure has slightly different variants such as the 
root mean squared error (RMSE): 

  ( ) ( )21RMSE ,  
n

i i
i

y
n

x= −∑x y , (7.1.2) 

the mean absolute error (MAE): 

 ( ) 1MAE ,  
n

i i
i

y
n

x= −∑x y , (7.1.3) 

the mean absolute percentage error (MAPE): 

 ( ) 1MAPE ,  
n

i i

i i

y
n

x
x
−

= ∑x y , (7.1.4) 

Note that these variations are often more desirable since the 
squared difference can be immensely large when the error is 
large. 

The MSE is quite reasonable, as it is essentially a measure of 
the area between two curves or the measure of the volume 
between the two surfaces, which are a 2D image of interest 
and the reference image respectively. This measure is 
compatible to error analysis in a transformed/channelized 
space using coefficients of an orthonormal linear transform. 
Recall that Parseval’s identity states that the squared area 
under a function is the same as the squared area of the 

Fourier-transformed function: ( ) ( )
22 ˆf t dt f s ds

∞ ∞

−∞ −∞

=∫ ∫ . 
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Although all the above errors are useful, they often fail to 
agree with our visual perception, and cannot perform well in 
many practical applications. As shown in Figure 7.1-1, relative 
to the ground truth, all the compromised images suffer from 
the same amount of MSE but they give very different visual 
impressions.  

 
Figure 7.1-1. Relative to the standard image (in the red box), 
the five compromised images (in the green box) all have a 
MSE of 225 but look very differently. On the other hand, the 
SSIM measure (in yellow to be explained below) effectively 
reflects the visual quality. 

It can be seen in Figure 7.1-1 how all the compromised images 
differ from the standard in different ways. For example, the 
top two images in the green box are visually pleasing with 
minor variations. On the other hand, the bottom three images 
have poorer quality due to their blocky, blurring, or noise 
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appearances respectively. Therefore, we cannot rely on MSE 
alone to access image quality.  

This brings us to a biomimetic perspective of image quality 
assessment based on the human visual system (HVS). HVS 
extracts structural information and is adapted for contextual 
changes. This is why all the green-boxed images look so 
different despite the same MSE measure. This structurally-
oriented assessment is a top-down approach in contrast to 
the pixel-wise comparison and overall error-pooling, which is 
a bottom-up approach.  

Then, how to assess structural distortion in images? A classic 
result is the structural similarity (SSIM) (Wang, Bovik et al. 
2004). This measure computes a structural distortion in an 
image that is consistent to HVS. Please look at Figure 7.1-1 
again, and see how SSIM varies with visual image quality. 

Figure 7.1-2 shows the mechanism by which the SSIM 
measurement works. SSIM incorporates three aspects of the 
difference between two images: luminance, contrast, and 
structure. To be clear, luminance is the measure of the 
average value of each image, contrast is a variability within an 
image. Once we normalize two images to the same luminance 
and contrast levels, we can compare their structures. 
Formally, we wish to incorporate these three aspects into a 
single measure:  

 ( ) ( ) ( ) ( )( ), , , , , ,S f l c s=x y x y x y x y   (7.1.5) 
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where l  is the luminance, c  is the contrast, and s  is the 
structure. When formulating such a similarity measure, we 
request the measure to satisfy the following postulates: 
symmetry, boundedness, and unique maximum: 

1. Symmetry: ( ) ( )S , S ,=x y x y ; (7.1.6) 

2. Boundedness: ( ) 1S , ≤x y ; (7.1.7) 

3. Unique Maximum: ( ) 1S , =x y  if and only if the two 

images are the same. (7.1.8) 

 
Figure 7-2. Structural Similarity (SSIM) integrates 
differences in luminance, contrast and structure, and forms a 
composition number between 0 and 1 to reflect an overall 
visual impression. 

To find an SSIM value of an image relative to a reference 
image, we need to compute the mean and deviation of an 
image. The mean can be expressed as 
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x
N

µ
=

= ∑x    (7.1.9) 

Note that if we remove the mean from an image,  xµ−x , we 

have a luminance-normalized image. The standard deviation 
can be computed as 

 ( ) ( )
1/2
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σ µ
=

 
= − − 

∑x   (7.1.10) 

Likewise, if we scale an image with its deviation, 
( ) x

x

µ
σ
−x

, we 

have a contrast-normalized image.  

First, let us perform the luminance comparison as follows: 

 ( ) 1
2 2

1

2
,  x y

x y

C
l

C
µ µ

µ µ
+

=
+ +

x y ,   (7.1.11) 

where the constant 1C  is included to avoid instability when 
2 2

x yµ µ+  is close to zero. Specifically, ( )2
1 1C K L= , where 1K

is a very small constant, and L  is the dynamic range of pixel 
values (for example, 255L =  for 8-bit grayscale images). To 
see how the above expression satisfies the postulates we have 
previously listed, we point out the following simple 
computation: 
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Likewise, we will use a similar expression for the contrast 
comparison: 

  

 ( ) 2
2 2

2

2
,  x y

x y

C
c

C
σ σ

σ σ
+

=
+ +

x y ,   (7.1.12) 

where ( )2
2 2C K L= , 2K  being a small constant like K1.  

Note again how the above expression still satisfies the 
postulates brought up earlier. Note that for the same amount 
of contrast difference (   y xσ σ σ∆ = − ), the contrast 

comparison will basically depend on the ratio between   σ∆  
and σ . This point can be appreciated by looking at the 
following estimation (for a small constant offset): 

 
( )

2

22

2 ( ) 1( , ) 1
2

x x x c xf x x x
xx x x c

+ ∆ + ∆ + ∆ = ≈ −  
 + + ∆ +

. 

In other words, a change in stimulus is measured with respect 
to this ratio, being consistent to HVS, which is commonly 
referred to as Weber’s law, as shown in Figure 7.1-3. 
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Figure 7.1-3. Example showing how the HVS interprets 
difference. The two images in the left column are in sharper 
contrast than the images in the right column even though the 
number of dots differs by the same amount (i.e., 10) in the two 
columns respectively. 

Now, we are ready to compare structural similarity between 
two normalized images ( ) /x xµ σ−x  and ( ) /y yµ σ−y . The 

correlation between the two images is an effective measure 
for this purpose, based on the Cauchy-Schwarz Inequality Eq. 
(2.4.3). Since the correlation between the normalized images 
is the same as the correlation coefficient between the 
original images, the structural comparison can be done as 
follows: 

 ( ) 3

3

,  xy

x y

C
s

C
σ
σ σ

+
=

+
x y ,  (7.1.13) 
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with the same analogous constant 3C as previously discussed, 

and  

( )( )
1

1 
1

N

xy i x i y
i

x y
N

σ µ µ
=

= − −
− ∑ .  (7.1.14) 

Note that the value of ( ),s x y  will be no more than 1 due to 

the Cauchy-Schwarz Inequality and reach 1 if and only if 
k=x y  where k  is a constant. 

Combining the above three Eqs. (7.1.11), (7.1.12) and (7.1.13) 
together, we obtain the SSIM as follows:  

( ) ( ) ( ) ( )SSIM ,  ,  , ,l c s
α β γ

     =      x y x y x y x y , (7.1.15) 

 

where ,  , α β and  γ are parameters to adjust the relative 
importance of the three components. This expression can be 
simplified by setting   1 α β γ= = = and 3 2 / 2C C= , yielding 

the following widely-used form of SSIM: 

 ( ) ( )( )
( )( )

1 2

2 2 2 2
1 2

2 2
SSIM ,  x y xy

x y x y

C C

C C

µ µ σ

µ µ σ σ

+ +
=

+ + + +
x y . (7.1.16) 

The concept of SSIM has been extended in various ways, such 
as in the cases of color images, time-varying signals, and multi-
scale analysis. 
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SECTION 7.2. SYSTEM-SPECIFIC INDICES 

Since tomographic scanners produce images, we are 
interested in system specifications on various aspects of the 
nominal image quality. These specifications are often 
provided by manufactures and monitored by medical 
physicists for quality control. Technological advancements 
often lead to improved system-specific image quality indices. 

First, data noise is what we do not want but it is unavoidable. 
The noise will demonstrates itself as random fluctuations, 
because of the probabilistic nature of the underlying physics, 
which is quantum mechanics in the cases of x-ray 
transmission and γ-ray emission. Due to data noise and 
imperfectness of imaging system components, images 
computed with noisy data necessarily contain noise as well. 
The signal-to-noise ratio (SNR) is typically defined as the 
ratio of the magnitude of a signal and the standard deviation 
of noise: 

 Signal

Noise

A
SNR

σ
= ,   (7.2.1) 

where A  denotes the signal magnitude. Sometimes, RSN is 
also defined as the ratio between the power of the signal and 
the variance of the noise. Indeed, the peak SNR (PSNR) is 
defined as 

 
2

10log Signal Max

Noise

A
PSNR

σ
− 

=  
 

, (7.2.2) 
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where Signal MaxA −  is the maximum signal or largest pixel 

value in an image. Clearly, information extraction will be more 
difficult with a lower SNR than in the case of a higher SNR. A 
noise-interfered image of “SIGNAL” is shown in Figure 7.2-1. 
A sister version of SNR is the contrast-to-noise ratio (CNR) 
defined as 

 1 2Signal Signal

Noise

A A
CNR

σ
− −−

= ,   (7.2.3) 

which is focused on the difference between two signals, 
normalized by the noise deviation. 

 
Figure 7.2-1. Signal embedded in a noisy background. 

Second, various kinds of image resolution are used to 
indicate the imaging system’s resolving power. The target to 
be resolved by the imaging system can be structural details, 
shading differences, temporal changes, or spectral contents, 
which correspond to spatial resolution (or simply, 
resolution), contrast resolution (or, simply, contrast), 
temporal resolution (i.e., time resolution), and spectral 
resolution (or energy resolution) respectively. 
Quantitatively, resolution of any kind is a measure of the 
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smallest difference between two signals with which they can 
be differentiated. 

For a point object modeled as a delta function, an imaging 
system will not be capable to capture it perfectly. The 
resultant image will be a blurred version of this point, which 
is called the impulse response or point spread function 
(PSF) of the imaging system. Then, spatial resolution is the 
distance between two bright spots at which they can be told 
apart and within which they become indistinguishable. 
Suppose that the spots are of bell shape, which is also referred 
to as Gaussian blurring, when they overlap too much they will 
be blurred together. Hence, it is heuristic to define spatial 
resolution as the full width at half maximum (FWHM), as 
shown in Figure 7.2-2. When the separation is greater than 
FWHNM, the two spots are fused into one spot, and we cannot 
resolve them visually. 

 
Figure 7.2-2. Image resolution defined as full width at half 
maximum (FWHM) of a point response function, which is 
often in a Gaussian form. When two points are separated less 
than FWHM away, they cannot be visually distinguished. 

FWHM is only one of spatial resolution measures. Another 
good example is the modulation transfer function (MTF). 
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With an ideal point/line object as an input, the output of the 
imaging system will a blurred version of the original structure. 
The Fourier transform is then performed of the input and the 
output respectively. Their resultant Fourier spectra are ( )I f  

and O( f )  respectively. MTF is defined as 

 ( )
( )
( )

O f
MTF f

I f
=    (7.2.4) 

where f is the spatial frequency. A typical MTF curve is 
shown in Figure 7.2-3. When the value of MTF goes below the 
noise level at a sufficiently high frequency, image details and 
noise fluctuations are no longer separable, suggesting the 
spatial resolution at that frequency; for example, in terms of 
line pairs per millimeter. 

 
Figure 7.2-3. Normalized MTF curve.  
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Another important type of resolution is contrast resolution, 
which targets subtle shading differences. For example, 
nodules may look very similar to normal biological soft tissues 
in CT images, and they do not present in good contrast when 
image noise is strong or the imaging protocol is not optimized. 
Figure 7.2-4 shows significant differences between three 
radiograms in various contrasts.  

 
Figure 7.2-4. Three x-ray radiographic images from the same 
patient in high (Left), low (Middle) and optimum (Right) 
contrasts respectively. 

Temporal resolution measures how quickly an imaging 
system can take a snapshot so that a moving structure, such as 
a beating heart, can be “frozen” to avoid motion blurring. For 
example, ultrasound imaging forms an image quickly, and is 
suitable to determine cardiac functions. In contrast, magnetic 
resonance imaging (MRI) cannot have both sharp spatial 
resolution and fast temporal resolution at the same time.  

Spectral resolution is also highly relevant. For optical 
imaging, we can use various fluorescent probes to label 
biological biomarkers in different colors. Thus, we often 
produce colorful images, and do not want to be color-blinded. 
As a further example, x-ray images used to be on a gray-scale 
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but now equipped with the so-called photon-counting 
detector techniques, the K-edge of contrast tracers can be 
resolved for chemically-specific material decomposition. 

Finally, the concept of image artifacts must be explained. 
Image artifacts are structures in images but these structures 
are not real. Hence, the artifacts are ghosts in the image 
domain. For example, when metallic implants are inside a 
patient, x-rays cannot penetrate them effectively, leading to 
poor data quality. When we reconstruct a CT image from 
compromised x-ray data, steaking artifacts will appear around 
the metal parts. These artifacts are not real but they hidden 
anatomical and pathological features. The sources and types 
of imaging modality-dependent image artifacts are many, and 
can be compensated for or eliminated using dedicated 
techniques. Figure 7.2-5 shows two cases, in each of which 
there are the true, uncorrected images, and images corrected 
using metal artifact reduction (MAR) algorithms including a 
state of the art method called “normalized MAR” (NMAR) 
and our in-house convolutional neural network (CNN) 
method. 
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Figure 7.2-5. True, metal artifact affected, and corrected 
images.  
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SECTION 7.3. TASK-SPECIFIC PERFORMANCE 

The specifications of an imaging system include multiple 
system-specific parameters/indices, and not all of them are 
equally important for a given diagnostic/interventional task. 
Most imaging studies are for a single disease/procedure, and 
image quality assessment should be task-based to optimize 
the diagnostic performance. In this section, we will introduce 
a few basic measures that are of direct clinical interest, and 
discuss how to optimize them. 

After reading an image, an interpretation must be given, which 
can be correct or incorrect, depending on inherent image 
quality and also subsequent image analysis. As an example, let 
us say that we wish to detect a lung nodule in a patient. The 
only four scenarios are possible: (1) there is a nodule, and it is 
detected, known as a true positive (TP); (2) there is no 
nodule, and it is confirmed as no nodule, known as a true 
negative (TN); (3) there is a nodule present but is not 
detected and falsely reported as no nodule, known as a false 
negative (FN), and (4) there is no nodule at all, but a tumor is 
falsely reported, known as a false positive (FP). Depending 
on the task, false negatives and false positives can have 
varying degrees of adverse effects. For example, in the case of 
lung screening, a false negative is usually far worse than a false 
positive.  

Two fundamental concepts in medicine are sensitivity and 
specificity. Sensitivity is defined as TP/(TP+FN), where the 
denominator is the total number of all positive cases. 
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Sensitivity is the likelihood of detecting a pathological feature 
positively when the case is indeed positive; in other words, it 
is a measure of how sure we can say “yes”. On the other hand, 
specificity is defined as TN/(TN+FP), where the denominator 
is the total number of all negative cases. Specificity is the 
likelihood of detecting a case a negative when the case is 
indeed negative; in other words, it is a measure of how sure 
we can say “nope”.  

Two related concepts are positive predictive value (PPV) 
and negative predictive value (NPV). PPV is defined by 
TP/(TP+FP), where the denominator is the total number of all 
positively reported cases. PPV is the fraction of patients who 
have positive results actually are positive. On the other hand, 
NPV is defined as TN/(TN+FN), where the denominator is the 
total number of all negatively reported cases. NPV is the 
fraction of patients who have negative results actually are 
negative. Furthermore, diagnostic accuracy (DA) is the ratio 
between the number of correctly reported cases and the 
number of patients, prevalence (PR) is the ratio between the 
number of positive cases and the number of involved subjects. 
To highlight how PPV and NPV are different from sensitivity 
and specificity, please look at Table 7.3-1. In this lung CT 
screening study, sensitivity is 22/30 (73.3%), specificity is 
1,739/1,790 (97.2%), PPV is 22/73 (30.1%), NPV is 
1,739/1,747 (99.5%), DA is (22+1,739)/1,820 (96.8%), and 
PR is 30/1,820 (1.6%). 
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 Lung Nodule  

CT Yes No Total 
Positive 22 51 73 
Negative 8 1739 1747 

Total 30 1790 1820 
 

Table 7.3-1. Diagnostic analysis on lung CT screening results 
from 1,820 subjects. 

Now, we are ready to discuss a practically important but 
slightly tricky tool: receiver operating characteristic (ROC) 
analysis. This tool relies on a curve using data of specificity 
and sensitivity to depict the diagnostic performance of an 
imaging study. The plot focuses on sensitivity as a function of 
“1-specificity” which is the rate of false positives or false 
alarms, as shown in Figure 7.3-1.  

 
Figure 7.3-1. Receiver operating characteristic (ROC) curve 
with the horizontal and vertical axes for “1-specificity” (false 
positives or false alarms) and sensitivity respectively. 

To understanding Figure 7.3-1 better, let us consider two 
extreme cases. First, what if we blindly claim all the subjects 
have diseases? In this case, all heathy patients are called 
diseased, and the rate of false positives will be 100% 
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(specificity will be 0%). On the other hand, sensitivity will be 
100%, since no patient with disease will be called healthy. 
This case is the point at the top-right corner. Second, what if 
we blindly claim all patients are healthy? In this case, all 
diseased patients are called healthy, and the rate of false 
positives will be 0% (specificity will be 100%), but sensitivity 
will be 0%, since no healthy patient is called diseased. This 
case is the point at the bottom-left corner. Third, we can just 
flip a coin to decide if we call a subject healthy or diseased. 
Then, both sensitivity and specificity will be 50%. 

Generally, a population is categorized into two groups: 
healthy and diseased. In an ideal case, there is a large gap 
between the readings from the two groups, making a clear 
distinction between those who are healthy and those who are 
diseased. However, often times the distribution has a 
significant overlap, resulting in no clear cut between the two 
classes. Due to this overlap, different thresholds can be set to 
achieve varying levels of sensitivity and specificity. In other 
words, many possible combinations of sensitivity and 
specificity are possible. 
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Figure 7.3-2. Area under the ROC curve as a good measure of 
the diagnostic preformation. 

As shown in Figure 7.3-2, as different thresholds are chosen, 
the diagnostic decision will lead to corresponding selectivity 
and specificity. Each decision rule (threshold) will define a 
unique point in the sensitivity-specificity plane. All such 
points form the ROC curve as a representation of the 
diagnostic performance. Better ROC curves will be those 
bulging farther to the upper left corner, having greater areas 
under the ROC curve. 

It should be underlined that ROC analysis can be applied to not 
only assess image quality but also evaluate doctors’ expertise 
or the capability of image analysis software in extracting 
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diagnostic information from images. In this way, we can 
measure individual performance with regard to detecting 
diseases, since each doctor has his/her own interpretation 
and therefore his/her own ROC curve. Similarly, we can 
compare computer-aided diagnostic programs with trained 
radiologists. In all these cases, better doctors or higher quality 
software packages will follow a ROC curve closer to the upper 
left corner. It is widely believed that the day is near that 
artificial intelligence will outperform average radiologists in 
most diagnostic tasks (Wang, Kalra et al. 2017)! 

To appreciate how a machine can do a radiologist’s job, we 
should briefly describe an algorithmic mechanism called a 
model observer. Let us start with a linear imaging system 
model, which is a good approximation for a majority of 
imaging systems and typically in a discrete form: 

 = +g Hf n    (7.3.1) 

where f  is an object being imaged, H  is an imaging operator 
that represents an imaging system, n  is a noise background 
from the imaging process, and g  is an image vector. Then, we 
say that there are two cases to be reported based on the image 
produced by the imaging system: either positive or negative 
(for example, there is a nodule or not). This binary 
classification task can be formulated as a statistical 
hypothesis testing problem: 

 
( )

0

1

;
, 

b

b s

= +

= + +

H Hf n
H H f f n

   (7.3.2) 
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where 0H  is the outcome from a negative case, 1H  is the 

outcome from a positive case, fb  is the background image (or 

the features of an image that do not determine if the outcome 
is positive or negative), and fs  is a signal (or the features of 

interest whose presence indicates a positive result, such as a 
nodule).  

In an ideal case, the ideal observer utilizes all statistical 
information available regarding the diagnostic task to 
maximize the diagnostic performance. The ideal observer 
should extract all relevant features, utilize all prior 
knowledge, and achieve the best diagnostic performance as 
measured by the area under the ROC curve among all the 
observers, based on the same data  g. It is conceptually clear 
that the ideal observer should make its decision according to 
the likelihood ratio: 

 ( ) ( )
( )

1

0

Hg
g H

g
f ||
f ||

Λ = ,   (7.3.3) 

where ( )g Hf |  is probability density functions of the image 

under a hypothesis. 

For simplicity, we can assume our decision process to be a 
linear system targeting the maximum SNR. The resultant 
optimal observer is called the Hotelling observer. This is 
important as often times an ideal observer is not possible as 
one does not have access to all the required statistics. A 
channelized Hotelling observer, on the other hand, will 
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perform the same task as the hoteling observer but it will only 
utilize certain features of an image instead of the whole image.  

SECTION 7.4. REMARKS 

We have discussed three aspects of image quality assessment. All 
the measures are defined to quantify how well an imaging system 
performs but in different settings. For example, the least squared 
measures tell how close it is between an acquired image and the 
reference, SSIM shows structural similarity as the name SSIM 
indicates, and the area under the ROC curve is specific to clinical 
tasks. 

From the information theoretic perspective, when an imaging 
system produces an image. A measurement is done on an 
underlying object, and inherent information in the image needs to 
be extracted by a radiologist, a pathologist, or a computer 
program. Given the rapid development of machine learning 
techniques, computerized intelligent image readers are being 
actively developed, and will gradually replace human experts. 
This whole workflow includes multiple steps from data 
acquisition, through image reconstruction, image processing and 
analysis, to the final report. Each of the steps should be optimized 
to maximize the information content and/or minimize the 
information loss. 

Information theory is an important branch of modern science, 
which was pioneered by Claude E. Shannon to find the 
fundamental capability and limit on signal processing and 
communication (Shannon 1997). Random variables or processes 
are often used as mathematical models of information theory. 
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Among important concepts in information theory, entropy and 
mutual information are particularly relevant. The material in this 
sub-section describes the essential idea of the information theory, 
and demands some abstract thinking and substantial efforts to 
digest well. 

The entropy for a discrete random variable is defined as 

 ( ) ( )2
1

X
Xx

H p x log
p x∈

= ∑ ,   (7.4.1) 

where the discrete random variable x is defined in its space X 
with a probability ( )p x . The meaning of the second factor 

( )2
1log

p x
 on the right-hand side of Eq. (7.4.1) is the number 

of bits necessary to represent permissible values of the 
variable x. If you toss a coin, you have two possible events, and 
you only need 1 bit to record your outcome (0 for head, and 1 
for tail). If you play a dice in the shape of a regular octahedron, 
you have eight equally likely results, and you need at least 3 
bits to record the outcome in this case. Of course, if you play a 
regular dice which has six faces, you still need 3 bits, since the 
bit is the minimum unit of the digital memory. With the 

probability ( )p x  as the weighting factor for 
( )2
1log

p x
, the 

entropy, as a statistical expectation, indicates the minimum 
number of bits needed to describe the random variable x. 
Hence, the larger the entropy, the more the uncertainty 
associated with the random variable, as measured by the 
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minimum amount of digital memory for coding all possible 
outcomes.  

For two discrete random variables x and y in their domains X 
and Y with probabilities p(x) and p(y) as well as joint 
probability p(x, y), we have the conditional probability 
distributions as follows: 

 ( ) ( )
( )

p x, y
p x | y

p y
=  , and ( ) ( )

( )
p x, y

p y | x
p x

=  . (7.4.2) 

If the two random variables are independent, each conditional 
probability is independent of the conditioned variable. If the 
variables are dependent, how should we measure their 
dependency?  

From the information theoretic perspective, the answer is to 
compute how much information we obtain on one variable 
after we know the value of the other variable. This 
consideration leads to the concepts of conditional entropy, 
total entropy, mutual information, and Kullback-Leibler 
distance. 

The conditional entropy Y X|H  and total entropy X Y,H are 

naturally defined as 

 ( ) ( ) ( )2Y X
X Y

|
x y

H p x p y | x log p y | x
∈ ∈

= −∑ ∑ , (7.4.3) 

 ( ) ( )2X Y
X Y

,
x ,y

H p x, y log p x, y
∈ ∈

= ∑ .  (7.4.4) 
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If you are insightful enough, it should be understandable that 
the total entropy should be the sum of the conditional entropy 
of one variable and the entropy of the conditioned variable; 
that is, 

 
X Y X Y X, |H H H= + .  (7.4.5) 

Indeed, if we have a composite system Z that consists of two 
independent subsystems X and Y, with three corresponding 
random variables x, y, and z with probabilities p(x), p(y) and 
p(z), then p(z)=p(x)p(y). Then, the total entropy must be the 
sum of the component entropies: 

 ( ) ( )2Z
Zz

H p z log p z
∈

= ∑   

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2

X Y

X Y

X Y

x ,y

x y

p x p y log p x p y

p x log p x p y log p y

H H .

∈ ∈

∈ ∈

 =  

= +

= +

∑

∑ ∑  (7.4.6) 

To prove Eq. (7.4.5), we only need to point out that 
( ) ( ) ( )p x, y p x p y | x=  from Eq. (7.4.2). 

If the two variables are independent, then Y X Y|H H= ; but 

generally Y X Y|H H<  (i.e., we would have some information 

about y if we know x if the two variables are statistically 
relevant). Hence, we can define the mutual information as 

 X Y Y Y X X X Y, | |I H H H H= − = −  , (7.4.7) 
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Eq. (7.4.7) can be re-formulated as follows: 

( ) ( ) ( ) ( ) ( )2 2
1

X Y
Y X Y

,
y x y

I p y log p x p y | x log p y | x
p y∈ ∈ ∈

= +∑ ∑ ∑

 

( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

2

2

2

Y
X Y

Y
X Y

Y X X Y

X Y

x ,y

x ,y

,

x ,y

H p x, y log p y | x

p x, y
H p x, y log

p x
H H H

p x, y
p x, y log

p x p y

∈ ∈

∈ ∈

∈ ∈

= +

= +

= + +

=

∑

∑

∑

 

That is, 

 ( ) ( )
( ) ( )2X Y

X Y
,

x ,y

p x, y
I p x, y log

p x p y∈ ∈

= ∑  . (7.4.8) 

Geometrically, the mutual information measure how far a 
joint probability distribution is from an independent 
distribution given by the product of the marginal 
distributions. 

Motivated by the concept of mutual information, we define the 
Kullback-Leibler distance between two probability 
distributions p(x) and q(x) in the same spirit of Eq. (7.4.8): 

 ( ) ( ) ( )
( )Xx

q x
D q || p q x log

p x∈

 
=   

 
∑  , (7.4.9) 
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with the convention that ( )0 0 0log =  and 
00 0
0

log   = 
 

. It 

can be shown that ( )D q || p is convex with respect to q(x), 

nonnegative, and equal to zero if and only if p(x) and q(x) are 
indistinguishable. Hence, ( )D q || p  is qualified as a distance 

measure although it is not symmetric, i.e., 

( ) ( )D q || p D p || q≠ .  

In Sub-section 7.1, we have described least squared measures 
as Euclidean distances. There are actually many types of 
distances, and by any measure the Kullback-Leibler distance 
is among the most important one; for example, in image 
processing (registration) and machine learning. Also, in Sub-
section, we have introduced the SSIM, which involves a 
correlation coefficient Eq. (7.1.14) to measure the structural 
similarity.  While the correlation coefficient only reflects the 
linear correlation, the mutual information Eq. (7.4.8) 
effectively captures the nonlinear dependency in the 
fundamental way. 
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